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Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization



Compiling functional languages



Functional languages

• First class functions: functions are values just like any other
• can be passed as parameters (e.g., map)
• can be returned (e.g. (+) 1)

• Functions that take functions as parameters or return functions are called higher-order
• A higher-order functional language is one with nested functions with lexical scope
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Scoping

• (fun x -> e) is an expression that evaluates to a function
• x is the function’s parameter
• e is the function’s body

• Occurrences of x within e are said to be bound in (fun x -> e)
• Variables are resolved to most closely containing fun.

• Occurrences of variables that are not bound are called free
(fun x -> (fun y -> (x z) (fun x -> x) y))



Closures

• Consider ((fun x -> (fun y -> x)) 0) 1
1 Apply the function (fun x -> fun y -> x) to the argument 0⇝ (fun y -> x)

2 Apply the function (fun y -> x) to the argument 1⇝???
• x is free in (fun y -> x)!

• In higher-order functional languages, a function value is a closure, which consists of a
function pointer and an environment

• Environment is used to interpret variables from enclosing scope



Closures

• Consider ((fun x -> (fun y -> x)) 0) 1
1 Apply the function (fun x -> fun y -> x) to the argument 0⇝ (fun y -> x)
2 Apply the function (fun y -> x) to the argument 1⇝???

• x is free in (fun y -> x)!

• In higher-order functional languages, a function value is a closure, which consists of a
function pointer and an environment

• Environment is used to interpret variables from enclosing scope



Closures

• Consider ((fun x -> (fun y -> x)) 0) 1
1 Apply the function (fun x -> fun y -> x) to the argument 0⇝ (fun y -> x)
2 Apply the function (fun y -> x) to the argument 1⇝???

• x is free in (fun y -> x)!
• In higher-order functional languages, a function value is a closure, which consists of a

function pointer and an environment
• Environment is used to interpret variables from enclosing scope



l e t compose =
fun (f : int -> int) ->

( fun (g : int -> int) ->
( fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→
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Compiling closures

• Closure conversion transforms a program so that no function accesses free variables
• Hoisting transforms a closure-converted program so that all function expressions appear

at the top-level
• Function expressions can be implemented as functions



Nameless representation

• Idea (de Bruijn): use a representation of expressions without named bound variables
• Each variable is replaced by a number: # of enclosing scopes between occurrence & the

scope it is resolved to
• (fun x -> x)⇝ (fn 0)
• (fun x -> (fun y -> x))⇝ (fn(fn 1))

• (fun x -> (fun y -> y))⇝(fn(fn 0))
• (fun x -> (fun y -> x) x)⇝(fn(fn 1) 0)

• Environments can be implemented as lists
• Each environment has a pointer to parent environment
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Closure conversion

• Invariant: translated expressions involve a single variable, say p
• p represents an environment (as a list)

• Variable x (with index i)⇝ look-up ith element of p

(fun x -> e)⇝ (fun p -> e′, p) where e⇝ e′

(f a)⇝ (fst f′) (a′::(snd f′)) where f⇝ f′, a⇝ a′

Save evaluation environment

Evaluation environment: index 0 7→ a, other indices shifted
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Practical closure conversion

• Following a chain of pointers for each variable access is expensive

• Partially flattened representation: environment is represented as a list of arrays
• List stores bindings for entire activation frames rather than variables

• Flattened representation: environment is represented as an array
• Fast accesses
• Greater space requirement (no sharing with parent environment)
• Can reduce space by storing only variables that are actually free
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Hoisting

• After closure-conversion, every function expression is closed (no free variables)
• No free variables ⇒ no need for closures
• Function expressions evaluate to function pointers

• Hoisting
• Gives globally unique identifiers each function expression
• Replaces function expressions with their identifiers
• Places definitions for the identifiers as top-level scope



Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden
• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single

argument at a time
• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second

argument y and produces the result
• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.
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