
COS320: Compiling Techniques

Zak Kincaid

April 23, 2020

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Compiling functional languages

Functional languages

• First class functions: functions are values just like any other
• can be passed as parameters (e.g., map)
• can be returned (e.g. (+) 1)

• Functions that take functions as parameters or return functions are called higher-order
• A higher-order functional language is one with nested functions with lexical scope

Functional languages

• First class functions: functions are values just like any other
• can be passed as parameters (e.g., map)
• can be returned (e.g. (+) 1)

• Functions that take functions as parameters or return functions are called higher-order

• A higher-order functional language is one with nested functions with lexical scope

Functional languages

• First class functions: functions are values just like any other
• can be passed as parameters (e.g., map)
• can be returned (e.g. (+) 1)

• Functions that take functions as parameters or return functions are called higher-order
• A higher-order functional language is one with nested functions with lexical scope

Scoping

• (fun x -> e) is an expression that evaluates to a function
• x is the function’s parameter
• e is the function’s body

• Occurrences of x within e are said to be bound in (fun x -> e)
• Variables are resolved to most closely containing fun.

• Occurrences of variables that are not bound are called free
(fun x -> (fun y -> (x z) (fun x -> x) y))

Closures

• Consider ((fun x -> (fun y -> x)) 0) 1
1 Apply the function (fun x -> fun y -> x) to the argument 0⇝ (fun y -> x)

2 Apply the function (fun y -> x) to the argument 1⇝???
• x is free in (fun y -> x)!

• In higher-order functional languages, a function value is a closure, which consists of a
function pointer and an environment

• Environment is used to interpret variables from enclosing scope

Closures

• Consider ((fun x -> (fun y -> x)) 0) 1
1 Apply the function (fun x -> fun y -> x) to the argument 0⇝ (fun y -> x)
2 Apply the function (fun y -> x) to the argument 1⇝???

• x is free in (fun y -> x)!

• In higher-order functional languages, a function value is a closure, which consists of a
function pointer and an environment

• Environment is used to interpret variables from enclosing scope

Closures

• Consider ((fun x -> (fun y -> x)) 0) 1
1 Apply the function (fun x -> fun y -> x) to the argument 0⇝ (fun y -> x)
2 Apply the function (fun y -> x) to the argument 1⇝???

• x is free in (fun y -> x)!
• In higher-order functional languages, a function value is a closure, which consists of a

function pointer and an environment
• Environment is used to interpret variables from enclosing scope

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

Compiling closures

• Closure conversion transforms a program so that no function accesses free variables
• Hoisting transforms a closure-converted program so that all function expressions appear

at the top-level
• Function expressions can be implemented as functions

Nameless representation

• Idea (de Bruijn): use a representation of expressions without named bound variables
• Each variable is replaced by a number: # of enclosing scopes between occurrence & the

scope it is resolved to
• (fun x -> x)⇝ (fn 0)
• (fun x -> (fun y -> x))⇝ (fn(fn 1))

• (fun x -> (fun y -> y))⇝(fn(fn 0))
• (fun x -> (fun y -> x) x)⇝(fn(fn 1) 0)

• Environments can be implemented as lists
• Each environment has a pointer to parent environment

Nameless representation

• Idea (de Bruijn): use a representation of expressions without named bound variables
• Each variable is replaced by a number: # of enclosing scopes between occurrence & the

scope it is resolved to
• (fun x -> x)⇝ (fn 0)
• (fun x -> (fun y -> x))⇝ (fn(fn 1))
• (fun x -> (fun y -> y))⇝

(fn(fn 0))
• (fun x -> (fun y -> x) x)⇝(fn(fn 1) 0)

• Environments can be implemented as lists
• Each environment has a pointer to parent environment

Nameless representation

• Idea (de Bruijn): use a representation of expressions without named bound variables
• Each variable is replaced by a number: # of enclosing scopes between occurrence & the

scope it is resolved to
• (fun x -> x)⇝ (fn 0)
• (fun x -> (fun y -> x))⇝ (fn(fn 1))
• (fun x -> (fun y -> y))⇝(fn(fn 0))

• (fun x -> (fun y -> x) x)⇝(fn(fn 1) 0)

• Environments can be implemented as lists
• Each environment has a pointer to parent environment

Nameless representation

• Idea (de Bruijn): use a representation of expressions without named bound variables
• Each variable is replaced by a number: # of enclosing scopes between occurrence & the

scope it is resolved to
• (fun x -> x)⇝ (fn 0)
• (fun x -> (fun y -> x))⇝ (fn(fn 1))
• (fun x -> (fun y -> y))⇝(fn(fn 0))
• (fun x -> (fun y -> x) x)⇝

(fn(fn 1) 0)

• Environments can be implemented as lists
• Each environment has a pointer to parent environment

Nameless representation

• Idea (de Bruijn): use a representation of expressions without named bound variables
• Each variable is replaced by a number: # of enclosing scopes between occurrence & the

scope it is resolved to
• (fun x -> x)⇝ (fn 0)
• (fun x -> (fun y -> x))⇝ (fn(fn 1))
• (fun x -> (fun y -> y))⇝(fn(fn 0))
• (fun x -> (fun y -> x) x)⇝(fn(fn 1) 0)

• Environments can be implemented as lists
• Each environment has a pointer to parent environment

Nameless representation

• Idea (de Bruijn): use a representation of expressions without named bound variables
• Each variable is replaced by a number: # of enclosing scopes between occurrence & the

scope it is resolved to
• (fun x -> x)⇝ (fn 0)
• (fun x -> (fun y -> x))⇝ (fn(fn 1))
• (fun x -> (fun y -> y))⇝(fn(fn 0))
• (fun x -> (fun y -> x) x)⇝(fn(fn 1) 0)

• Environments can be implemented as lists
• Each environment has a pointer to parent environment

Closure conversion

• Invariant: translated expressions involve a single variable, say p
• p represents an environment (as a list)

• Variable x (with index i)⇝ look-up ith element of p

(fun x -> e)⇝ (fun p -> e′, p) where e⇝ e′

(f a)⇝ (fst f′) (a′::(snd f′)) where f⇝ f′, a⇝ a′

Save evaluation environment

Evaluation environment: index 0 7→ a, other indices shifted

Closure conversion

• Invariant: translated expressions involve a single variable, say p
• p represents an environment (as a list)

• Variable x (with index i)⇝ look-up ith element of p

(fun x -> e)⇝ (fun p -> e′, p) where e⇝ e′

(f a)⇝ (fst f′) (a′::(snd f′)) where f⇝ f′, a⇝ a′

Save evaluation environment

Evaluation environment: index 0 7→ a, other indices shifted

Closure conversion

• Invariant: translated expressions involve a single variable, say p
• p represents an environment (as a list)

• Variable x (with index i)⇝ look-up ith element of p

(fun x -> e)⇝ (fun p -> e′, p) where e⇝ e′

(f a)⇝ (fst f′) (a′::(snd f′)) where f⇝ f′, a⇝ a′

Save evaluation environment

Evaluation environment: index 0 7→ a, other indices shifted

Closure conversion

• Invariant: translated expressions involve a single variable, say p
• p represents an environment (as a list)

• Variable x (with index i)⇝ look-up ith element of p

(fun x -> e)⇝ (fun p -> e′, p) where e⇝ e′

(f a)⇝ (fst f′) (a′::(snd f′)) where f⇝ f′, a⇝ a′

Save evaluation environment

Evaluation environment: index 0 7→ a, other indices shifted

Practical closure conversion

• Following a chain of pointers for each variable access is expensive

• Partially flattened representation: environment is represented as a list of arrays
• List stores bindings for entire activation frames rather than variables

• Flattened representation: environment is represented as an array
• Fast accesses
• Greater space requirement (no sharing with parent environment)
• Can reduce space by storing only variables that are actually free

Practical closure conversion

• Following a chain of pointers for each variable access is expensive
• Partially flattened representation: environment is represented as a list of arrays

• List stores bindings for entire activation frames rather than variables

• Flattened representation: environment is represented as an array
• Fast accesses
• Greater space requirement (no sharing with parent environment)
• Can reduce space by storing only variables that are actually free

Practical closure conversion

• Following a chain of pointers for each variable access is expensive
• Partially flattened representation: environment is represented as a list of arrays

• List stores bindings for entire activation frames rather than variables
• Flattened representation: environment is represented as an array

• Fast accesses
• Greater space requirement (no sharing with parent environment)

• Can reduce space by storing only variables that are actually free

Practical closure conversion

• Following a chain of pointers for each variable access is expensive
• Partially flattened representation: environment is represented as a list of arrays

• List stores bindings for entire activation frames rather than variables
• Flattened representation: environment is represented as an array

• Fast accesses
• Greater space requirement (no sharing with parent environment)
• Can reduce space by storing only variables that are actually free

Hoisting

• After closure-conversion, every function expression is closed (no free variables)
• No free variables ⇒ no need for closures
• Function expressions evaluate to function pointers

• Hoisting
• Gives globally unique identifiers each function expression
• Replaces function expressions with their identifiers
• Places definitions for the identifiers as top-level scope

Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden
• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single

argument at a time
• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second

argument y and produces the result
• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.

Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden

• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single
argument at a time

• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second
argument y and produces the result

• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.

Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden
• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single

argument at a time
• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second

argument y and produces the result
• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.

