
COS320: Compiling Techniques

Zak Kincaid

April 16, 2020

Static Single Assignment form

SSA

• Each %uid appears on the left-hand-side of at most one assignment in a CFG

if (x < 0) {
y := y - x;

} else {
y := y + x;

}
return y

→

if (x0 < 0) {
y1 := y0 - x0;

} else {
y2 := y0 + x0;

}
y3 := ϕ(y1, y2)
return y3

• Recall: y3 := ϕ(y1, y2) picks either y1 or y2 (whichever one corresponds to the branch that is
actually taken) and stores it in y3

• Well-formedness condition: uids must be defined before they are used.

Register allocation

• SSA form reduces register pressure
• Each variable x is replaced by potentially many “subscripted” variables x1, x2, x3,...

• (At least) one for each definition of of x
• Each xi can potentially be stored in a different memory location

• Interference graphs for SSA programs are chordal (every cycle contains a chord)
• Chordal graphs can be colored optimally in polytime
• (But optimal translation out of SSA form is intractable)

Register allocation

• SSA form reduces register pressure
• Each variable x is replaced by potentially many “subscripted” variables x1, x2, x3,...

• (At least) one for each definition of of x
• Each xi can potentially be stored in a different memory location

• Interference graphs for SSA programs are chordal (every cycle contains a chord)
• Chordal graphs can be colored optimally in polytime
• (But optimal translation out of SSA form is intractable)

Dead assignment elimination

Simple algorithm for eliminating assignment1 instructions that are never used:
while some %x has no uses do

Remove definition of %x from CFG;

• SSA conversion ⇒ more assignments are eliminated

x := 0

x := 1

return 2 * x

x0 := 0

x1 := 1

return 2 * x1

SSA conversion

1does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment1 instructions that are never used:
while some %x has no uses do

Remove definition of %x from CFG;

• SSA conversion ⇒ more assignments are eliminated

x := 0

x := 1

return 2 * x

x0 := 0

x1 := 1

return 2 * x1

SSA conversion

1does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment1 instructions that are never used:
while some %x has no uses do

Remove definition of %x from CFG;

• SSA conversion ⇒ more assignments are eliminated

x := 0

x := 1

return 2 * x

x0 := 0

x1 := 1

return 2 * x1

SSA conversion

1does not eliminate dead stores

Dead assignment elimination

Simple algorithm for eliminating assignment1 instructions that are never used:
while some %x has no uses do

Remove definition of %x from CFG;

• SSA conversion ⇒ more assignments are eliminated

x := 0

x := 1

return 2 * x

x0 := 0

x1 := 1

return 2 * x1

SSA conversion

1does not eliminate dead stores

Recall: constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• ⊤ (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Say that the assignment IN,OUT is conservative if
1 IN[s] assigns each variable ⊤
2 For each node bb ∈ N,

OUT[bb] ⊒ postCP(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊒ OUT[src]

(Dense) constant propagation performance

• Memory requirements: O(|N| · |Var|)
• Constant environment has size O(|Var|), need to track O(1) per node

• Time requirements: O(|N| · |Var|)
• Processing a single node takes O(1) time
• Each node is processed O(|Var|) times

• Height of the abstract domain (length of longest strictly ascending sequence): 3|Var|
• Can we do better?

Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
• Don’t need to store the value of every variable at every program point
• Don’t need to propagate changes through irrelevant blocks

• Can think of SSA as a graph, where edges correspond to data flow rather than control flow
• Define rhs(%x) to be the right hand side of the unique assignment to %x
• Define succ(%x) = {%y : rhs(%y) reads %x}

• Local specification for constant propagation:
• scp is the smallest function Uid → Z ∪ {⊤,⊥} such that

• If G contains no assignments to %x, then scp(%x) = ⊤
• For each instruction %x = e, scp(%x) = eval(e, scp)

Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
• Don’t need to store the value of every variable at every program point
• Don’t need to propagate changes through irrelevant blocks

• Can think of SSA as a graph, where edges correspond to data flow rather than control flow
• Define rhs(%x) to be the right hand side of the unique assignment to %x
• Define succ(%x) = {%y : rhs(%y) reads %x}

• Local specification for constant propagation:
• scp is the smallest function Uid → Z ∪ {⊤,⊥} such that

• If G contains no assignments to %x, then scp(%x) = ⊤
• For each instruction %x = e, scp(%x) = eval(e, scp)

Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
• Don’t need to store the value of every variable at every program point
• Don’t need to propagate changes through irrelevant blocks

• Can think of SSA as a graph, where edges correspond to data flow rather than control flow
• Define rhs(%x) to be the right hand side of the unique assignment to %x
• Define succ(%x) = {%y : rhs(%y) reads %x}

• Local specification for constant propagation:
• scp is the smallest function Uid → Z ∪ {⊤,⊥} such that

• If G contains no assignments to %x, then scp(%x) = ⊤
• For each instruction %x = e, scp(%x) = eval(e, scp)

Worklist algorithm

scp(%x) =
{
⊥ if %x has an assignment
⊤ otherwise

work← {%x ∈ Uid : %x is defined};
while work ̸= ∅ do

Pick some %x from work;
work← work \ {%x} ;
if rhs(%x) = ϕ(%y,%z) then

v← scp(%y) ⊔ scp(%z)
else

v← eval(rhs(%x), scp)
if v ̸= scp(%x) then

scp(%x)← v;
work← work ∪ succ(%x)

Computational complexity of constant propagation

Dense Sparse
Memory O(|N| · |Var|) O(|N|) = O(|Var|)
Time O(|N| · |Var|) O(|N|) = O(|Var|)

• However, observe that we only find constants for uids, not stack slots.
• Again, advantageous to use uids to represent variable whenever possible

Computing SSA

(High-level) SSA conversion

• Replace each definition x = e with a xi = e for some unique subscript i
• Replace each use of a variable y with yi, where the ith definition of y is the unique reaching

definition

• If multiple definitions reach a single use, then they must be merged using a ϕ (phi)
statement

y := 0;
while (x >= 0) {
x := x - 1;
y := y + x;

}
return y

→

y0 := 0;
while (true) {
x2 = ϕ(x0, x1)
y2 = ϕ(y0, y1)
if (x2 < 0) break;
x1 := x2 - 1;
y1 := y2 + x1;

}
return y2

(High-level) SSA conversion

• Replace each definition x = e with a xi = e for some unique subscript i
• Replace each use of a variable y with yi, where the ith definition of y is the unique reaching

definition
• If multiple definitions reach a single use, then they must be merged using a ϕ (phi)

statement

y := 0;
while (x >= 0) {
x := x - 1;
y := y + x;

}
return y

→

y0 := 0;
while (true) {
x2 = ϕ(x0, x1)
y2 = ϕ(y0, y1)
if (x2 < 0) break;
x1 := x2 - 1;
y1 := y2 + x1;

}
return y2

Placing ϕ statements

• Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
• A join point is a node in the CFG with more than one predecessor

• Better solution: place a ϕ statement for variable x at location n exactly when the following
path convergence criterion holds: there exist a pair of non-empty paths P1,P2 ending at
n such that

1 The start node of both P1 and P2 defines x2

2 The only node shared by P1 and P2 is n
• The path convergence criterion can be implemented using the concept of iterated

dominance frontiers

2The entry node of the CFG is considered to be an implicit definition of every variable

Placing ϕ statements

• Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
• A join point is a node in the CFG with more than one predecessor

• Better solution: place a ϕ statement for variable x at location n exactly when the following
path convergence criterion holds: there exist a pair of non-empty paths P1,P2 ending at
n such that

1 The start node of both P1 and P2 defines x2

2 The only node shared by P1 and P2 is n

• The path convergence criterion can be implemented using the concept of iterated
dominance frontiers

2The entry node of the CFG is considered to be an implicit definition of every variable

Placing ϕ statements

• Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
• A join point is a node in the CFG with more than one predecessor

• Better solution: place a ϕ statement for variable x at location n exactly when the following
path convergence criterion holds: there exist a pair of non-empty paths P1,P2 ending at
n such that

1 The start node of both P1 and P2 defines x2

2 The only node shared by P1 and P2 is n
• The path convergence criterion can be implemented using the concept of iterated

dominance frontiers

2The entry node of the CFG is considered to be an implicit definition of every variable

Dominance

• Let G = (N,E, s) be a control flow graph
• We say that a node d ∈ N dominates a node n ∈ N if every path from s to n contains d

• Every node dominates itself
• d strictly dominates n if d is not n
• d immediately dominates n if d strictly dominates n and but does not strictly dominate any

strict dominator of n.

• Observe: dominance is a partial order on N
• Every node dominates itself (reflexive)
• If n1 dominates n2 and n2 dominates n3 then n1 dominates n3 (transitive)
• If n1 dominates n2 and n2 dominates n1 then n1 must be n2 (anti-symmetric)

Dominance

• Let G = (N,E, s) be a control flow graph
• We say that a node d ∈ N dominates a node n ∈ N if every path from s to n contains d

• Every node dominates itself
• d strictly dominates n if d is not n
• d immediately dominates n if d strictly dominates n and but does not strictly dominate any

strict dominator of n.
• Observe: dominance is a partial order on N

• Every node dominates itself (reflexive)
• If n1 dominates n2 and n2 dominates n3 then n1 dominates n3 (transitive)
• If n1 dominates n2 and n2 dominates n1 then n1 must be n2 (anti-symmetric)

If we draw an edge from every node to its immediate dominator, we get a data structure called
the dominator tree.
• (Essentially the Haase diagram of the dominated-by order)

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

Dominance and SSA

• SSA well-formedness criteria
• If %x is the ith argument of a ϕ function in a block n, then the definition of %x must dominate

the ith predecessor of n.
• If %x is used in a non-ϕ statement in block n, then the definition of %x must dominate n

Dominator analysis

• Let G = (N,E, s) be a control flow graph.
• Define dom to be a function mapping each node n ∈ N to the set dom(n) ⊆ N of nodes

that dominate it

• Local specification: dom is the largest (equiv. least in superset order) function such that
• dom(s) = {s}
• For each p → n ∈ E, dom(n) ⊆ {n} ∪ dom(p)

• Can be solved using dataflow analysis techniques
• In practice: nearly linear time algorithm due to Lengauer & Tarjan

Dominator analysis

• Let G = (N,E, s) be a control flow graph.
• Define dom to be a function mapping each node n ∈ N to the set dom(n) ⊆ N of nodes

that dominate it
• Local specification: dom is the largest (equiv. least in superset order) function such that

• dom(s) = {s}
• For each p → n ∈ E, dom(n) ⊆ {n} ∪ dom(p)

• Can be solved using dataflow analysis techniques
• In practice: nearly linear time algorithm due to Lengauer & Tarjan

Dominator analysis

• Let G = (N,E, s) be a control flow graph.
• Define dom to be a function mapping each node n ∈ N to the set dom(n) ⊆ N of nodes

that dominate it
• Local specification: dom is the largest (equiv. least in superset order) function such that

• dom(s) = {s}
• For each p → n ∈ E, dom(n) ⊆ {n} ∪ dom(p)

• Can be solved using dataflow analysis techniques
• In practice: nearly linear time algorithm due to Lengauer & Tarjan

• The dominance frontier of a node n is the set of all nodes m such that n dominates a
predecessor of m, but does not strictly dominate m itself.

• DF(n) = {m : (∃p ∈ Pred(m).n ∈ dom(p)) ∧ (m = n ∨ n /∈ dom(m))}
• Whenever a node n contains a definition of some uid %x, then any node m in the

dominance frontier of n needs a ϕ function for %x.

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅

• DF(2) = {2}
• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {3, 6}
• DF(6) = {2}

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅
• DF(2) = {2}

• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {3, 6}
• DF(6) = {2}

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅
• DF(2) = {2}
• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {3, 6}
• DF(6) = {2}

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅
• DF(2) = {2}
• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {3, 6}
• DF(6) = {2}

Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed

1

2 3

4: x4 = ... 5: x5 = ... 6: x6 = ... 7: x7 = ...

8 9

8: x8 = ϕ(x4, x5) 9: x9 = ϕ(x6, x7)

10

Not in dominance frontier of 4,5,6,7

Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed

1

2 3

4: x4 = ... 5: x5 = ... 6: x6 = ... 7: x7 = ...

8 9

8: x8 = ϕ(x4, x5) 9: x9 = ϕ(x6, x7)

10

Not in dominance frontier of 4,5,6,7

Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed

1

2 3

4: x4 = ... 5: x5 = ... 6: x6 = ... 7: x7 = ...

8 9

8: x8 = ϕ(x4, x5) 9: x9 = ϕ(x6, x7)

10

Not in dominance frontier of 4,5,6,7

SSA construction

• Extend dominance frontier to sets of nodes by letting DF(M) =
∪

m∈M
DF(m)

• Define the iterated dominance frontier IDF(M) =
∪

i
IDFi(M), where

• IDF0(M) = DF(M)
• IDFi+1(M) = IDFi(M) ∪ IDF(IDFi(M))

• For any node x, let Def(x) be the set of nodes that define x
• Finally, we can characterize ϕ statement placement

Insert a ϕ statement for x at every node in IDF(Def(x))

SSA construction

• Extend dominance frontier to sets of nodes by letting DF(M) =
∪

m∈M
DF(m)

• Define the iterated dominance frontier IDF(M) =
∪

i
IDFi(M), where

• IDF0(M) = DF(M)
• IDFi+1(M) = IDFi(M) ∪ IDF(IDFi(M))

• For any node x, let Def(x) be the set of nodes that define x
• Finally, we can characterize ϕ statement placement

Insert a ϕ statement for x at every node in IDF(Def(x))

Transforming out of SSA

• The ϕ statement is not executable, so it must be removed in order to generate code

• For each ϕ statement %x = ϕ(%x1, ..., $xk) in block n, n must have exactly k predecessors
p1, ...pk

• Insert a new block along each edge pi → n which executes %x = %xi (program no longer
satisfies SSA property!)

• Using a graph coalescing register allocator, often possible to eliminate the resulting move
instructions

Transforming out of SSA

• The ϕ statement is not executable, so it must be removed in order to generate code
• For each ϕ statement %x = ϕ(%x1, ..., $xk) in block n, n must have exactly k predecessors

p1, ...pk
• Insert a new block along each edge pi → n which executes %x = %xi (program no longer

satisfies SSA property!)

• Using a graph coalescing register allocator, often possible to eliminate the resulting move
instructions

Transforming out of SSA

• The ϕ statement is not executable, so it must be removed in order to generate code
• For each ϕ statement %x = ϕ(%x1, ..., $xk) in block n, n must have exactly k predecessors

p1, ...pk
• Insert a new block along each edge pi → n which executes %x = %xi (program no longer

satisfies SSA property!)
• Using a graph coalescing register allocator, often possible to eliminate the resulting move

instructions

