COS320: Compiling Techniques

Zak Kincaid

April 16, 2020

SSA

Each %uid appears on the left-hand-side of at most one assignment in a CFG

```
if (x < 0) {
    y := y - x;
} else {
    y := y + x;
}

return y

if (x_0 < 0) {
    y<sub>1</sub> := y<sub>0</sub> - x<sub>0</sub>;
} else {
    y<sub>2</sub> := y<sub>0</sub> + x<sub>0</sub>;
}

y<sub>3</sub> := \phi(y_1, y_2)
return y<sub>3</sub>
```

- Recall: $y_3 := \phi(y_1, y_2)$ picks either y_1 or y_2 (whichever one corresponds to the branch that is actually taken) and stores it in y_3
- Well-formedness condition: uids must be defined before they are used.

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many "subscripted" variables $x_1, x_2, x_3,...$
 - (At least) one for each definition of of x
 - Each x_i can potentially be stored in a different memory location

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many "subscripted" variables x_1 , x_2 , x_3 ,...
 - (At least) one for each definition of of x
 - Each x_i can potentially be stored in a different memory location
- Interference graphs for SSA programs are chordal (every cycle contains a chord)
 - Chordal graphs can be colored optimally in polytime
 - (But optimal translation out of SSA form is intractable)

Simple algorithm for eliminating assignment 1 instructions that are never used: while some %x has no uses do

Remove definition of %x from CFG:

¹does *not* eliminate dead *stores*

Simple algorithm for eliminating assignment¹ instructions that are never used: while some %x has no uses do

Remove definition of %x from CFG:

¹does *not* eliminate dead *stores*

Simple algorithm for eliminating assignment¹ instructions that are never used: while some %x has no uses do

Remove definition of %x from CFG:

$$\begin{cases} x := 0 \\ x := 1 \end{cases}$$
 SSA conversion
$$x_0 := 0$$

$$x_1 := 1$$

$$return 2 * x_1$$

¹does *not* eliminate dead *stores*

Simple algorithm for eliminating assignment¹ instructions that are never used: while some %x has no uses do

Remove definition of %x from CFG;

$$\begin{cases} x := 0 \\ x := 1 \\ \text{return } 2 * x \end{cases}$$
 SSA conversion
$$x_1 := 1$$
 return $2 * x_1$

¹does *not* eliminate dead *stores*

Recall: constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
 - A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that \vec{x} 's value is n whenever the program is at \vec{I})
 - \top (indicating that x might take more than one value at I)
 - \perp (indicating that x may take no values at run-time I is unreachable)
- Say that the assignment IN, OUT is conservative if
 - **1** IN[s] assigns each variable \top
 - **2** For each node $bb \in N$,

$$\mathsf{OUT}[bb] \supseteq \mathsf{post}_{CP}(bb, \mathsf{IN}[bb])$$

3 For each edge $src \rightarrow dst \in E$,

$$IN[dst] \supseteq OUT[src]$$

(Dense) constant propagation performance

- Memory requirements: $O(|N| \cdot |Var|)$
 - Constant environment has size O(|Var|), need to track O(1) per node
- Time requirements: $O(|N| \cdot |Var|)$
 - Processing a single node takes O(1) time
 - Each node is processed O(|Var|) times
 - Height of the abstract domain (length of longest strictly ascending sequence): 3|Var|
- Can we do better?

Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks

Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 - Define rhs(%x) to be the right hand side of the unique assignment to %x
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$

Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 - Define rhs(%x) to be the right hand side of the unique assignment to %x
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$
- Local specification for constant propagation:
 - *scp* is the smallest function $Uid \to \mathbb{Z} \cup \{\top, \bot\}$ such that
 - If G contains no assignments to %x, then $scp(%x) = \top$
 - For each instruction %x = e, scp(%x) = eval(e, scp)

Worklist algorithm

```
scp(\%x) = \begin{cases} \bot & \text{if } \%x \text{ has an assignment} \\ \top & \text{otherwise} \end{cases}
work \leftarrow {%x \in Uid : \%x is defined};
 while work \neq \emptyset do
        Pick some \%x from work:
       work \leftarrow work \setminus \{\%x\};
       if rhs(\%x) = \phi(\%y, \%z) then
               v \leftarrow \mathsf{scp}(\%y) \sqcup \mathsf{scp}(\%z)
       else
               v \leftarrow eval(rhs(\%x), scp)
       if v \neq scp(\%x) then
              scp(\%x) \leftarrow v
              work \leftarrow work \cup succ(\%x)
```

Computational complexity of constant propagation

	Dense	Sparse
Memory	$O(N \cdot Var)$	O(N) = O(Var)
		O(N) = O(Var)

- However, observe that we only find constants for uids, not stack slots.
 - Again, advantageous to use uids to represent variable whenever possible

(High-level) SSA conversion

- Replace each definition x = e with a $x_i = e$ for some unique subscript i
- Replace each *use* of a variable y with y_i , where the ith definition of y is the unique reaching definition

(High-level) SSA conversion

- Replace each definition x = e with a $x_i = e$ for some unique subscript i
- Replace each *use* of a variable y with y_i , where the ith definition of y is the unique reaching definition
- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) statement

Placing ϕ statements

- ullet Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
 - A join point is a node in the CFG with more than one predecessor

²The entry node of the CFG is considered to be an implicit definition of every variable

Placing ϕ statements

- ullet Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
 - A join point is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 - 1 The start node of both P_1 and P_2 defines x^2
 - 2 The only node shared by P_1 and P_2 is n

²The entry node of the CFG is considered to be an implicit definition of every variable

Placing ϕ statements

- ullet Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
 - A join point is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 - 1 The start node of both P_1 and P_2 defines x^2
 - **1** The only node shared by P_1 and P_2 is n
- The path convergence criterion can be implemented using the concept of iterated dominance frontiers

²The entry node of the CFG is considered to be an implicit definition of every variable

Dominance

- Let G = (N, E, s) be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.

Dominance

- Let G = (N, E, s) be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.
- Observe: dominance is a partial order on N
 - Every node dominates itself (reflexive)
 - If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 - If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)

If we draw an edge from every node to its immediate dominator, we get a data structure called the *dominator tree*.

• (Essentially the Haase diagram of the dominated-by order)

Dominance and SSA

- SSA well-formedness criteria
 - If %x is the *i*th argument of a ϕ function in a block n, then the definition of %x must dominate the *i*th predecessor of n.
 - If %x is used in a non- ϕ statement in block n, then the definition of %x must dominate n

Dominator analysis

- Let G = (N, E, s) be a control flow graph.
- Define \emph{dom} to be a function mapping each node $n \in N$ to the set $\emph{dom}(n) \subseteq N$ of nodes that dominate it

Dominator analysis

- Let G = (N, E, s) be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it
- Local specification: dom is the largest (equiv. least in superset order) function such that
 - $dom(s) = \{s\}$
 - For each $p \to n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$

Dominator analysis

- Let G = (N, E, s) be a control flow graph.
- Define \emph{dom} to be a function mapping each node $n \in N$ to the set $\emph{dom}(n) \subseteq N$ of nodes that dominate it
- Local specification: dom is the largest (equiv. least in superset order) function such that
 - $dom(s) = \{s\}$
 - For each $p \to n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$
- Can be solved using dataflow analysis techniques
 - In practice: nearly linear time algorithm due to Lengauer & Tarjan

- The dominance frontier of a node n is the set of all nodes m such that n dominates a predecessor of m, but does not strictly dominate m itself.

dominance frontier of n needs a ϕ function for %x.

• $DF(n) = \{m : (\exists p \in Pred(m). n \in dom(p)) \land (m = n \lor n \notin dom(m))\}$ • Whenever a node n contains a definition of some uid %x then any node m in the

• $DF(1) = \emptyset$

Control Flow Graph 1

Dominator tree

- $DF(1) = \emptyset$
- $DF(2) = \{2\}$

- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$

DF(5) = {3,6}DF(6) = {2}

• $DF(1) = \emptyset$

Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid %x, then any node m in the dominance frontier of n needs a ϕ statement for %x.
- But, that is not the only place where ϕ statements are needed

Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid %x, then any node m in the dominance frontier of n needs a ϕ statement for %x.
- But, that is not the only place where ϕ statements are needed

Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid %x, then any node m in the dominance frontier of n needs a ϕ statement for %x.
- But, that is not the only place where ϕ statements are needed

SSA construction

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the *iterated dominance frontier IDF* $(M) = \bigcup_{i} IDF_{i}(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$

SSA construction

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the iterated dominance frontier $\mathit{IDF}(M) = \bigcup_i \mathit{IDF}_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$
- For any node x, let Def(x) be the set of nodes that define x
- Finally, we can characterize ϕ statement placement

Insert a ϕ statement for x at every node in IDF(Def(x))

Transforming out of SSA

• The ϕ statement is not executable, so it must be removed in order to generate code

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code
- For each ϕ statement $\%x = \phi(\%x_1,...,\$x_k)$ in block n, n must have exactly k predecessors $p_1,...p_k$
- Insert a new block along each edge $p_i \to n$ which executes $\%x = \%x_i$ (program no longer satisfies SSA property!)

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code
- For each ϕ statement $\%x = \phi(\%x_1,...,\$x_k)$ in block n, n must have exactly k predecessors $p_1,...p_k$
- Insert a new block along each edge $p_i \to n$ which executes $\%x = \%x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions