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Theorem 4.1 ( [KT00]). If E : Fk
q → Fn

q is an (r, δ)-LDC, then n ≥ Cr,δ · k
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Proof. Suppose first that r ≥ 2. Pick a subset S ⊆ [n] by taking each ℓ ∈ [n] independently

with probability p = r
1
r

δ
1
r
· n− 1

r log
1
r
e

n
0.1

. Thus, with high probability |S| ≈ np. Let the

matching form of E be given by the vectors v1, . . . ,vn and the r-matchings M1, . . . ,Mk

with ∀i,M i =
(
T i
1, . . . , T

i
m

)
, where m = δn

r
. Let Pp = Prob[∀i ∈ [k],∃j ∈ [m], T i

j ⊆ S].

Claim 4.1.
1− Pp ≤ n(1− pr)

δn
r ≤ ne−

δn
r
pr

Proof. For any i ∈ [k] and j ∈ [m], we have that Pr[T i
j ⊆ S] = pr, since for each t ∈ T i

j ,
t ∈ S with probability p. Thus, Pr[T i

j ⊈ S] = 1 − pr. From here, since T i
1, . . . , T

i
m are

disjoint, we get Pr[∀j ∈ [m], T i
j ⊈ S] = (1 − pr)|M

i| = (1 − pr)
δn
r . Finally, by the Union

Bound the probability that ∃i ∈ [k] such that ∀j ∈ [m], T i
j ⊈ S is at most

∑k
i=1 Pr[∀j ∈

[m], T i
j ⊈ S] = n(1 − pr)

δn
r , and since Pr[∃i, ∀j ∈ [m], T i

j ⊈ S] = 1 − Pp, we get that

1− Pp ≤ n(1− pr)
δn
r . The second inequality follows from x+ 1 ≤ ex.

Now notice that ne−
δn
r
pr = 0.1 for our choice of p. This means that 1 − Pp ≤ 0.1, so

with probability 0.9, S is such that ∀i ∈ [k],∃j ∈ [m], S contains T i
j . This means that

with probability 0.9, {bj|j ∈ S} spans e1, . . . , ek, which implies that with probability 0.9,
k ≤ |S|. Now we are going to use the Chernoff Bound to bound |S| with respect to n.

Chernoff Bound: If X1, . . . , Xn are independent and identically distributed 0/1 random
variables with E[Xj] = µ, then Pr[|

∑n
j=1Xj − µn| ≥ ϵn] ≤ 2e−ϵ2n.

If we take ∀i ∈ [n], Xi to be the indicator variable that we have chosen i ∈ S, then µ = p.
Take ϵ = p. We get that Pr[|S| > 2np] ≤ e−p2n. Notice that since r ≥ 2, p ≥ 1.6√

n

as we have chosen it, which implies that e−p2n ≤ 0.1, so Pr[|S| > 2np] ≤ 0.1. This
means that with probability at least 0.9, |S| ≤ 2np. Since with probability 0.9, k ≤ |S|,
and with probability 0.9, |S| ≤ 2np, this means that there is a choice for S such that

k ≤ |S| ≤ 2np. Therefore, k ≤ 2np = 2n1− 1
r
r
1
r

δ
1
r
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r
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. To get the result stated above,
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notice that if n > k3, then it follows trivially. So we can assume n ≤ k3, which means that

k ≤ 2n1− 1
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. This gives us n ≥ 6
− r

r−1 δ
1

r−1 k
1+ 1
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, which is what

we wanted to show.

Note that in the case r = 1, the same proof goes through with p = 1.6√
n
, since 1.6√

n
>

1
δn

loge
n
0.1

, so we get that k ≤ 2np = 3.2
√
n, therefore n ≥ k2

10.24
, which is a much stronger

result.

This lower bound can be improved to roughly n ≥ Ω(k
1+ 1

⌈ r
2 ⌉−1 ) [Woo07]. We will show the

special case of r = 3 without repetition.

Theorem 4.2. If E : Fk
q → Fn

q is a (3, δ)-LDC without repetition, then n ≥ k2

3200 log k
.

Proof. Let the matching form of E be represented by vectors v1, . . . ,vn and 3-matchings
M1, . . . ,Mk with ∀i,M i =

(
T i
1, . . . , T

i
m

)
, where m = δn

r
. For simplicity, assume δ = 1

4
.

Assume for contradiction that k ≥ 40
√
n log n.

Claim 4.2. There exists a set S ⊆ [n] with |S| ≤ 12
√
n log n, such that ∀i ∈ [k], S

intersects at least 3m
√
logn√
n

=
( δn

3
)3 logn√
n

= δ
√
n log n of the 3-tuples in M i.

Proof. Pick a random S ⊆ [n] by taking each ℓ ∈ S independently and identically dis-

tributed with probability 6
√
logn√
n

, thus |S| ≈ 6
√
n log n. Furthermore, using the Chernoff

bound with Xℓ = 1 iff ℓ ∈ S and µ = ϵ = 6
√
logn√
n

, we can get that Pr[|S| ≥ 12
√
n log n] ≤

e−ϵ2n = e−36 logn. Notice that for n = 2, e−36 logn = 2.32 · 10−16, and as n grows this value
decreases. Thus with high probability we have that |S| ≤ 12

√
n log n. Now fix i ∈ [k], then

Pr[S intersects a tuple T i
j ∈ M i] ≥ 6

√
log n√
n

.

If we take Xj = 1 to mean that S intersects the tuple T i
j ∈ M i, then using the Chernoff

Bound with µ = 6
√
logn√
n

and ϵ = µ
2
, we get that
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Pr
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√
log n√
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∣∣∣ ≥ 3m
√
log n√
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]
≤ 2e

−9 lognm
n

Pr[S intersects less than
3m

√
log n√
n

of the tuples in M i] ≤ e
−9 lognδn

3n

= e−
3 logn

4

= n
− 3

4 loge 2

<
1

n1.08

Now by the Union Bound, the probability that for any M i, S intersects fewer than 3m
√
logn√
n

tuples in M i is at most n
n1.08 . For n = 2, we have n

n1.08 ≤ 0.947, and this value decreases
with n. Thus, we get that n

n1.08 + e−36 logn < 1 for n ≥ 2, so there exists an S of size at

most 12
√
n log n that intersects at least 3m

√
logn√
n

tuples in M i for every i ∈ [k].

Take S to be as described above. Then we can prove the following claim.

Claim 4.3. There exists a linear map L : Fk
q → F

k
2
q such that:

1. ∀j ∈ S, L(vj) = 0.

2. There are i1, . . . , i k
2
∈ [k], such that L(ei1) = e’1, . . . , L(ei k

2

) = e’ k
2
, where e’1, . . . e’ k

2

are the standard basis vectors in F
k
2
q , and e1, . . . , ek are the standard basis vectors in

Fk
q .

Proof. Let w1, . . . ,ws be a basis of {vj|j ∈ S}. Then since k ≥ 40
√
n log n and |S| ≤

12
√
n log n, we have that |S| ≤ k

2
, so there are k

2
standard basis vectors ei1 , . . . , ei k

2

such that {w1, . . . ,ws, ei1 , . . . , ei k
2

} are linearly independent. Define L such that L(ei1) =

e’1, . . . , L(ei k
2

) = e’ k
2
and L(w1) = · · · = L(ws) = 0, the vector with 0s in all coordinates.

Now apply L on v1, . . . ,vn ∈ Fk
q to get u1 = L(v1), . . . ,un = L(vn) ∈ F

k
2
q .

Claim 4.4. The vectors u1, . . . ,un give the generating matrix of a 2-query LDC with
matchings M ′1, . . . ,M ′ k

2 such that ∀i ∈ [k
2
], |M ′i| ≥ δ

√
n log n =

√
n logn
4

.
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Proof. For any M ′i, we will take some of the pairs from M i′ , where i′ is such that L(ei′) =
e’i. S intersects at least δ

√
n log n tuples in M i′ , which means that for at least δ

√
n log n

tuples in M i′ {vj1 ,vj2 ,vj3}, one of L(vj1), L(vj2), and L(vj3) is the 0 vector, since L(vh) =
0 if h ∈ S. Suppose without loss of generality that L(vj3) = 0. Since L is linear, it
preserves the matching structure of E, so from ei′ ∈ span{vj1 ,vj2 ,vj3}, it follows that
e’i ∈ span{L(vj1), L(vj2)}. Thus, we have that (L(vj1), L(vj2)) ∈ M ′i, and so |M ′i| ≥
δ
√
n log n.

Recall our previous classification of the pairs in the matchings. For each pair (v’j,v’j′) ∈
M ′i, one of the following two things holds:

1. e’i = v’j or e’i = v’j′ .

2. v’j and v’j′ differ only at the i-th coordinate.

As before, at most n of them are of Type 1, and so by the Edge-Isoperimetric Inequality
for the Hypercube (Lemma 2.1), we get that

k
2∑

i=1

|M ′i| ≤ n log n+ n

On the other hand, k
√
n logn
4

≤
∑ k

2
i=1M

′i, so

k ≤ 4
√
n log n+

4
√
n√

log n

k ≤ 8
√
n log n,

which contradicts our previous assumption that k ≥ 40
√
n log n. Therefore, k ≤ 1600

√
n log n,

so k2

1600
≤ n log n. If n > k2, then what we want to prove is true. So assume n ≤ k2. Then

k2

1600
≤ n log n ≤ n log k2 = 2n log k. This means that n ≥ k2

3200 log k
.

Exercise 4.1. Prove n ≥ Ω(k2) without log k factors.
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