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Proteins and their complexes are dynamic macromolecular 
machines that carry out the essential biological processes 
responsible for life. Although the mechanism of these macro-

molecular machines is often deduced from a static 3D structure, a 
more complete understanding could be achieved if one could ana-
lyze the full distribution of conformations relevant to function.

Single-particle cryo-EM is a rapidly maturing method for 
determining high-resolution structure of large macromolecular 
complexes1,2. Major advances in hardware3–5 and software4–9 have 
streamlined the collection and analysis of cryo-EM datasets, such 
that structures of rigid macromolecules can routinely be solved at 
near-atomic resolution10,11. Increasingly, cryo-EM has been applied 
to study heterogeneous complexes, as the experimental procedure 
is less sensitive to sample heterogeneity than other methods for 
structure determination12,13. Additionally, because single-particle 
cryo-EM can capture millions of snapshots of the molecule of inter-
est, each carrying a unique molecule in its own conformational 
state14, cryo-EM holds promise in revealing the conformational 
landscape of dynamic macromolecular complexes. However, recon-
structing ensembles of 3D volumes from such snapshots remains a 
major computational challenge.

Existing tools for heterogeneous reconstruction often make lim-
iting assumptions on the observed structural heterogeneity. Most 
commonly, heterogeneity is modeled as though it originates from a 
small number of independent, discrete states, implemented as ‘3D 
classification’ or ‘heterogeneous refinement’ in many cryo-EM soft-
ware packages15–18. However, these discrete classification approaches 
require specifying initial models for refinement, and because the 
number and nature of the underlying structural states is unknown 
a priori, this approach is error prone and often results in the omis-
sion of potentially relevant structures. More critically, such discrete 
approaches are ill-suited for reconstructing structures undergoing 
continuous conformational changes.

Advanced methods for heterogeneous reconstruction seek to 
more closely model the continuous nature of flexible molecules. 

Multibody refinement, available in RELION, models the structure 
as the sum of user-defined rigid bodies that are allowed to rotate rel-
ative to one another, placing structural assumptions on the observed 
heterogeneity19. Continuous heterogeneity was also described using 
principal component analysis (PCA)-based approaches20–22, includ-
ing the recent 3D Variability Analysis (3DVA) algorithm avail-
able in cryoSPARC23. Although the linear subspace model of these 
approaches can provide a summary of the overall variability within 
the dataset, the visualized heterogeneity contains artifacts when a 
molecule’s conformational deformations are poorly approximated 
by linear interpolations along basis volumes. In the manifold 
embedding approach proposed in refs. 24,25, heterogeneous struc-
tures are recovered by binning particles along the data manifold, 
followed by traditional homogeneous reconstruction. Additional 
algorithms for continuous heterogeneous reconstruction were dem-
onstrated on synthetic datasets26,27.

Here, we present cryoDRGN (Deep Reconstructing Generative 
Networks), a method for heterogeneous cryo-EM reconstruction 
based on deep neural networks. We hypothesized that neural net-
works, which are known for their ability to model complex, nonlin-
ear functions28, could learn heterogeneous ensembles of cryo-EM 
density maps. We first show that our neural network representa-
tion of structure can model single-density maps at high resolution, 
before demonstrating the full cryoDRGN framework for unsuper-
vised heterogeneous reconstruction.

We find that cryoDRGN is a powerful and general approach 
for analyzing structural heterogeneity in macromolecular com-
plexes of varying size and expected sources of heterogeneity. We 
show that the cryoDRGN approach can uncover residual hetero-
geneity in ‘homogeneous’ datasets of the recombination-activating 
gene RAG1–RAG2 complex and the 80S ribosome and model large 
compositional changes of the assembling 50S ribosome and con-
tinuous conformational changes of the pre-catalytic spliceosome. 
Remarkably, cryoDRGN’s unsupervised approach for representa-
tion learning can readily identify and filter impurities in the dataset 

CryoDRGN: reconstruction of heterogeneous 
cryo-EM structures using neural networks
Ellen D. Zhong   1,2, Tristan Bepler   1,2, Bonnie Berger   2,3 ✉ and Joseph H. Davis   1,4 ✉

Cryo-electron microscopy (cryo-EM) single-particle analysis has proven powerful in determining the structures of rigid mac-
romolecules. However, many imaged protein complexes exhibit conformational and compositional heterogeneity that poses a 
major challenge to existing three-dimensional reconstruction methods. Here, we present cryoDRGN, an algorithm that lever-
ages the representation power of deep neural networks to directly reconstruct continuous distributions of 3D density maps and 
map per-particle heterogeneity of single-particle cryo-EM datasets. Using cryoDRGN, we uncovered residual heterogeneity 
in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a new structural state of the assembling 50S 
ribosome, and visualized large-scale continuous motions of a spliceosome complex. CryoDRGN contains interactive tools to 
visualize a dataset’s distribution of per-particle variability, generate density maps for exploratory analysis, extract particle 
subsets for use with other tools and generate trajectories to visualize molecular motions. CryoDRGN is open-source software 
freely available at http://cryodrgn.csail.mit.edu.

NaTuRE METHoDs | VOL 18 | FeBrUArY 2021 | 176–185 | www.nature.com/naturemethods176

mailto:bab@mit.edu
mailto:jhdavis@mit.edu
http://orcid.org/0000-0001-6345-1907
http://orcid.org/0000-0001-5595-9954
http://orcid.org/0000-0002-2724-7228
http://orcid.org/0000-0002-8858-8907
http://cryodrgn.csail.mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-020-01049-4&domain=pdf
http://www.nature.com/naturemethods


ArticlesNAtURE MEtHoDS

and can identify rare structural states containing as few as ~1,000 
particles. CryoDRGN is distributed as an open-source tool that can 
be easily integrated into existing pipelines and is freely available at 
cryodrgn.csail.mit.edu.

Results
The cryoDRGN method. CryoDRGN performs heterogeneous 
reconstruction by learning a deep generative model of 3D struc-
ture from single-particle cryo-EM images. The method consists of 
a specialized image-encoder–volume-decoder architecture, which 
learns an encoding of two-dimensional (2D) particle images into 
a continuous vector space described by the latent variable z 2 Rn

I
 

(that is, the latent space), and the concomitant reconstruction of 3D 
cryo-EM density maps from this latent space representation (Fig. 
1a). This choice of model assumes that the heterogeneous structures 
can be embedded within a continuous, low-dimensional manifold 
in the latent space, where the dimensionality of the latent space is 
defined by the user. The model is specified in the Fourier domain to 
relate 2D images as planar slices of the 3D volume29, the orientation 
of which is previously determined from a consensus reconstruction. 
The neural networks are jointly trained from random initializa-
tion using stochastic gradient descent on an objective function that 
seeks to maximize (a variational lower bound on) the data likeli-
hood as in standard variational autoencoders (VAEs)30. Additional 

architectural and training details of cryoDRGN are provided in the 
Methods.

After training, the output of cryoDRGN analysis includes (1) 
per-particle latent encodings, zi, describing the dataset’s heteroge-
neity and (2) a neural network model of 3D density maps that can 
directly reconstruct a density map given zi. Specifically, the encoder 
network encodes particle images into the continuous latent space, 
which allows for visualization and inspection of particle distribu-
tion (Fig. 1b, center). The trained decoder network can then gener-
ate 3D density maps given arbitrary values of the latent variable. For 
example, representative structures can be generated from regions 
of latent space with high particle density, and continuous confor-
mational trajectories can be reconstructed by sampling points 
along a trajectory through latent space (Fig. 1b, right). Notably, any 
cryoDRGN-generated volume can be orthogonally validated by tra-
ditional reconstruction approaches15 using nearby particles in the 
latent space (Fig. 1b, left). Lastly, any regions of the latent space that 
are enriched in impurities or imaging artifacts may be selected, and 
the encompassed particles may be filtered from subsequent analysis 
(Fig. 1b, left).

Neural networks can represent cryo-EM density maps. We first 
evaluated the ability of the cryoDRGN volume decoder to represent 
high-resolution cryo-EM density maps. To learn the homogeneous 
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Fig. 1 | The cryoDRGN method for heterogeneous single-particle cryo-EM reconstruction. a, The cryoDrGN model consists of two neural networks 
structured in an image-encoder–volume-decoder architecture with a continuous latent variable representation of heterogeneity. During training, each 
particle image is encoded into the low-dimensional latent space and then reconstructed as its corresponding model slice based on the Fourier slice 
theorem. Image and volume data are depicted in real space for visual clarity. b, Once a cryoDrGN model is trained, the full dataset of particle images is 
encoded into the latent space, which is visualized here as a contour map with darker regions corresponding to higher particle density (center).  
The decoder, which represents an ensemble of 3D density maps, can directly generate density maps from arbitrary values of the latent variable (right).  
The particle stack may also be filtered using the latent space representation for validation of specific structures with traditional tools or to remove 
impurities from the dataset (left). example images are from eMPIAr-10180 (ref. 36).
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structure of the RAG1–RAG2 signal-end complex (RAG, 369 kDa)31 
and the Plasmodium falciparum 80S ribosome (Pf80S, 4.2 MDa)32, we 
trained the volume-decoder network with no latent variable input, 
using image poses obtained from C1 homogeneous refinements 
in cryoSPARC16 (Methods). Trained on full-resolution images, the 
cryoDRGN decoder produced structures that correlated with the 
traditional, voxel-based reconstruction (Fig. 2a) at resolutions up 
to 3.6 Å for RAG and 3.9 Å for Pf80S at a threshold of Fourier shell 
correlation (FSC) = 0.5 (Fig. 2b), demonstrating the efficacy of this 
neural network-based representation of 3D structure.

As neural networks have a fixed capacity for representation that 
is constrained by their architecture, we next compared decoder 
architectures of different sizes to evaluate the tradeoff between rep-
resentation power and training speed. We found that larger architec-
tures, which have more trainable parameters, result in density maps 
that correlate with the traditionally reconstructed map at higher 
resolutions (Fig. 2b). The networks were trained by multiple passes 
through the dataset (that is, epochs) (Fig. 2c), with lower values 
of the objective function (Fig. 2d) as training progressed. Notably, 
while the resolution of the learned structure increased with neural 
network size, we found that larger models were slower to train (Fig. 
2e). These tradeoffs suggest that the architecture and image size 
should be tuned to suit the desired balance of speed and achievable 

resolution. Lastly, we found that the cryoDRGN architecture was 
capable of learning density maps at sufficiently high resolution to 
visualize structural features, such as bulky side chains, that were 
consistent with our FSC-based resolution estimates (Fig. 2f).

CryoDRGN models both discrete and continuous structural het-
erogeneity. We next sought to evaluate the complete cryoDRGN 
framework for heterogeneous reconstruction using simulated 
datasets (Fig. 3a,b). Datasets modeling continuous heterogeneity 
were produced by rotating a single dihedral angle of a hypotheti-
cal protein complex to simulate a conformational transition along a 
one-dimensional (1D) reaction coordinate. Single-particle cryo-EM 
images were then simulated uniformly along this reaction coordi-
nate (‘uniform’), with bias toward particular conformations exem-
plary of cooperative transitions (‘cooperative’) or with strong bias 
leading to unobserved transition states (‘noncontiguous’). A dataset 
simulating discrete compositional heterogeneity was produced by 
mixing particles of the bacterial 30S, 50S and 70S ribosome (‘com-
positional’). We then provided each of these four simulated datas-
ets and their corresponding poses to cryoDRGN and trained a 1D 
latent variable model (Methods).

We found that cryoDRGN was capable of reconstructing both 
continuous and discrete heterogeneous ensembles (Fig. 3c–h). On 
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Fig. 2 | Neural network representation of cryo-EM density maps. a, Density maps of the rAG1–rAG2 complex (eMPIAr-10049)31 and of the eukaryotic 
Pf80S ribosome (eMPIAr-10028)32 reconstructed by cryoDrGN’s decoder neural network (left) and a traditional, voxel-based reconstruction in 
cryoSPArC (right). The cryoDrGN volumes were generated from decoder networks with three hidden layers and 1,024 nodes per hidden layer (denoted as 
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reconstruction in a. c,d, evolution of the FSC curve in b and the training curve over multiple epochs of cryoDrGN model training. e, Training speed in min per 
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the uniform conformational heterogeneity dataset, cryoDRGN 
reconstructed density maps that reproduced the ground-truth 
continuous motion of the complex (Fig. 3c). When trained on the  
compositional dataset, cryoDRGN reconstructed density maps 
of the 30S, 50S and 70S ribosomes at distinct values of the latent  
variable (Fig. 3d).

In addition to reconstructing heterogeneous density maps, 
cryoDRGN produces a latent encoding for each particle that can be 
compared to the ground-truth reaction coordinate (Fig. 3e–h). For 
the datasets with continuous conformational changes, the latent 
encoding of each image correlated with the position along the reac-
tion coordinate given by the dihedral angle of the underlying model 
(Spearman r = −0.996, 0.992 and 0.988 for uniform, cooperative 
and noncontiguous, respectively) (Fig. 3e). We observed that the 
qualitative features of the distribution of latent encodings matched 
the ground truth, with three modes in the latent encoding distri-
bution for the cooperative dataset (Fig. 3f) and distinct clusters 
for the noncontiguous and compositional datasets (Fig. 3g,h). We 
note that, in general, the parameterization of a reaction coordinate 
is non-unique (for example, when described by the learned latent 
variable or by the dihedral angle, leading to different marginal 
distributions in Fig. 3e). To quantitatively assess whether cryo-
DRGN learned the correct distribution of structures, we computed 
a ‘per-image’ FSC, which compares reconstructed density maps 
with the ground truth on images across the reaction coordinate 
(Methods), and found that the reconstructed structures of all four 

datasets correlated well with the ground-truth distribution (Fig. 3c 
and Extended Data Fig. 1).

CryoDRGN uncovers residual heterogeneity from ‘homoge-
neous’ cryo-EM datasets. We next evaluated cryoDRGN’s ability to 
perform heterogeneous reconstruction on real cryo-EM datasets of 
the RAG complex31 and the Pf80S32 ribosome from above. Ru et al. 
reported RAG complex structures from two distinct datasets: the 
‘signal-end complex’, which failed to resolve the distal ends of the 
12-recombination signal sequence (RSS) and 23-RSS DNA elements 
or the nonamer binding domain (NBD) of RAG1, and the ‘paired 
complex’, which resolved these elements at sufficient resolution 
for atomic model building (Fig. 4a). To test whether cryoDRGN 
could newly uncover heterogeneity of these distal elements in the 
‘signal-end complex’, we trained a cryoDRGN ten-dimensional 
(10D) latent variable model on the deposited particle images 
(EMPIAR-10049)31. We found that cryoDRGN revealed substantial 
heterogeneity of the 12-RSS, 23-RSS and NBD (Fig. 4b). In addi-
tion to maps that only resolve the symmetric core (light gray in 
Fig. 4b), cryoDRGN revealed structures with RSS positioning that 
aligned with the canonical conformation found in the ‘paired com-
plex’ atomic model31 (dark blue), tilting of the RSS strands (light 
blue), linear 23-RSS DNA (purple), as well as the presence (yellow) 
and absence (coral) of the NBD. These representative maps were 
selected out of a large ensemble of generated structures (Methods) 
from different regions of the latent space (Fig. 4c). A trajectory  
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sampling from the continuous distribution modeled by cryoDRGN 
is shown in Supplementary Video 1. To validate the presence of 
these heterogeneous states in the dataset, we performed heteroge-
neous 3D refinement in cryoSPARC16 using the cryoDRGN density 
maps as initial models, which reproduced the heterogeneity of the 
RSS elements (Extended Data Fig. 2). Subsequent work by Ru et al. 
suggested that the conformational dynamics and asymmetric posi-
tioning of the 12- and 23-RSS by the NBD in the pre-cleavage form 
are fundamental to the structural mechanism underlying the 12-23 
rule of variable, diversity, and joining gene segment (V(D)J) recom-
bination33. Our results newly demonstrate that such heterogeneity 
was also present in the post-cleavage ‘signal-end’ RAG complex.

While analyzing a homogeneous reconstruction of the Pf80S 
ribosome, Wong et al. observed flexibility in the small subunit (SSU) 

head region and missing density for peripheral rRNA expansion 
segment elements32. To explore if this unresolved density resulted 
from residual heterogeneity, we trained a cryoDRGN 10D latent 
variable model on their deposited dataset (EMPIAR-10028)32 and 
reconstructed an ensemble of density maps that not only contained 
structures consistent with the homogeneous reconstruction but also 
revealed rotation of the 40S SSU (Fig. 4d), heterogeneity within the 
SSU head (Extended Data Fig. 3) and motion of many peripheral 
rRNA expansion segments (Supplementary Video 2). By visualizing 
representative 40S-rotated and unrotated density maps, we found 
that cryoDRGN was able to simultaneously capture the large-scale 
intersubunit rotation and coordinated smaller-scale structural rear-
rangements, including motion of the L1 stalk, disappearance of 
an rRNA helix and the disappearance of the intersubunit bridge 
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formed by the C-terminal helix of eL8, which is consistent with Sun 
et al.’s characterization of Pf80S dynamics34 (Fig. 4d).

We then visualized the 10D latent space representation of the 
Pf80S particles with PCA (Fig. 4e) and with uniform manifold 
approximate and projection (UMAP)35 (Extended Data Fig. 4). 
The 40S-rotated density map originated from a region of the par-
ticle distribution separated along the first PC of the latent space. 
To validate the presence of this state, we extracted 4,889 particles 
constituting the outlying cluster (Methods). Traditional homoge-
neous reconstruction of these particles in cryoSPARC produced a 
6.4-Å reconstruction of the rotated 40S state that was consistent 
with the cryoDRGN structure (Extended Data Fig. 4). Additionally, 
by sampling many density maps from the latent space, we observed 
that structures with density missing from the SSU head group were 
located within a subregion of the main cluster of the UMAP visual-
ization (Extended Data Fig. 3). We hypothesize that the 40S-rotated 
state appears as a visually distinct cluster because more mass 
changes to rotate the entire 40S subunit, as opposed to the missing 
SSU head group state, which involves changes in a smaller region of 
the 40S subunit.

CryoDRGN automatically partitions assembly states of the 
bacterial ribosome. Next, we sought to evaluate cryoDRGN on a 
highly heterogeneous cryo-EM dataset of the Escherichia coli large 
ribosomal subunit (LSU) undergoing assembly (EMPIAR-10076)12. 
This dataset is known to contain substantial compositional and 
conformational heterogeneity; in the original analysis, multiple 
expert-guided rounds of hierarchical 3D classification resulted in 
13 discrete structures that were grouped into four major assem-
bly states. Here, we aimed to assess if cryoDRGN could auto-
matically reveal these heterogeneous states without user-guided  
3D classification.

As initial pilot experiments, we first trained 1D and 10D latent 
variable models on downsampled images of the dataset (Methods). 
The dataset’s latent space representation exhibited distinct peaks 
in the 1D case or clusters in the 10D case when visualized with 
UMAP35 (Fig. 5a,b) that corresponded to the major assembly states 
when grouped by the published 3D classification labels (Fig. 5c,d). 
As the particles were obtained by crudely fractionating a lysate to 
capture the full ensemble of cellular assembly intermediates, a sub-
stantial fraction of the published particle stack corresponds to 30S 
or non-ribosomal impurities. These unassigned particles were out-
liers in the latent representation (Fig. 5c and Extended Data Fig. 5), 
and neither 2D class averages nor a traditional 3D reconstruction of 
these particles produced structures consistent with assembling LSU 
ribosomes (Extended Data Fig. 5). As we did not wish to devote 
representation capacity of the cryoDRGN neural networks to mod-
eling these impurities, we used the latent representation to filter the 
dataset before further analysis, taking the intersection of the particle 
stack after filtering based on the 1D and 10D latent variable model 
(Methods).

To explore the heterogeneity within the LSU assembly states, we 
trained a cryoDRGN 10D latent variable model on the remaining 
images at higher resolution (Methods). The decoder network recon-
structed density maps that matched the reported major (Fig. 5e)  
and minor (Extended Data Fig. 6) assembly states of the LSU. We visu-
alized the encodings of particle images in the 10D latent space with 
UMAP and observed clusters corresponding to the major (Fig. 5f)  
and minor states (Fig. 5g and Supplementary Fig. 6) of LSU assem-
bly after coloring by the published 3D classification. From the latent 
representation, we also noted a clearly separated cluster of parti-
cles assigned to class A, and structures sampled from this region 
of latent space reconstructed the 70S ribosome, an impurity in the 
dataset (Fig. 5h). Finally, we identified a small cluster of ~1,100 
particles adjacent to the class C cluster, the particles of which were 
originally classified into class E (Fig. 5f, inset). The density map 

reconstructed by the decoder from this region revealed a previously 
unreported assembly intermediate that we newly define as class C4 
(Fig. 5i). Like the other class C structures, class C4 lacked the cen-
tral protuberance but possessed clearly resolved density for rRNA 
helix 68, which was only present in the mature E4 and E5 classes 
from Davis et al.12. Traditional homogeneous reconstruction of 
the particle images constituting this cluster reproduced a similar, 
albeit lower-resolution structure, which confirmed the existence of 
this structural state in the original dataset (Extended Data Fig. 7).  
We found that the cryoDRGN latent representation was highly 
reproducible across replicates (Extended Data Fig. 8). CryoDRGN 
experiments and runtimes are summarized in Fig. 5j. In addition to 
illustrating cryoDRGN’s ability to model extremely heterogeneous 
datasets without user-driven classification, this analysis further 
demonstrated that cryoDRGN can identify novel and rare (~1% of 
all particles) structural classes that would likely be overlooked by 
traditional hierarchical classification.

CryoDRGN reveals dynamic continuous motions in the 
pre-catalytic spliceosome. Finally, to assess cryoDRGN’s ability to 
model large continuous conformational changes, we reanalyzed a 
dataset of the pre-catalytic spliceosome (EMPIAR-10180)36. Using 
expert-guided focused classifications, Plaschka et al. reconstructed 
a composite map for this complex and suggested that the complex 
sampled a continuum of conformations with large motions of the 
SF3b subcomplex36. In our analysis, we first trained a 10D latent 
variable model on the downsampled images using image poses 
derived from a consensus reconstruction (Methods). Multiple clus-
ters were observed in the latent space encodings of the dataset’s par-
ticle images (Fig. 6a). In sampling structures from the latent space, 
the generated density maps revealed expected spliceosome confor-
mations from the largest cluster, poorly resolved structures (likely 
due to imaging artifacts from the leftmost cluster), structures lack-
ing density for the SF3b subcomplex from a third cluster and extra 
density of the U2 core, which is thought to be highly dynamic13, 
from the uppermost cluster (Fig. 6b). To focus our analysis on bona 
fide pre-catalytic spliceosome particles, we leveraged the latent 
space representation to eliminate any particles that mapped to the 
undesired clusters from two replicate runs (Methods).

With the filtered particle stack, we trained a 10D model on higher 
resolution images and visualized the dataset’s latent encodings in 2D 
using PCA (Fig. 6c). The visualized data manifold was unfeatured, 
consistent with a molecule undergoing non-cooperative conforma-
tional changes. By generating structures along the first principal 
component (PC) of the latent space encodings, we reconstructed 
a trajectory of the SF3b and helicase subcomplexes in motion, 
smoothly transitioning from an elongated state to one compressed 
against the body of the spliceosome (Fig. 6d). This large-scale motion 
was consistent with motions derived from the first PC of rigid-body 
orientations from multibody analysis (Extended Data Fig. 9) and in 
the first PC of the linear subspace model from 3DVA (Extended Data 
Fig 10). A similar traversal along the second PC produced a con-
tinuous trajectory of the SF3b and helicase subcomplexes moving 
in opposition (Supplementary Fig. 1 and Supplementary Video 4). 
The anticorrelated motion of the SF3b and helicase subcomplexes in 
PC2, together with their correlated motion in PC1, suggests that the 
two domains move independently in the imaged ensemble. Finally, 
although trajectories along latent space PCs provide a summary of 
the extent of variability in the structure, cryoDRGN can also gener-
ate structures at arbitrary points from the latent space. By traversing 
along the nearest neighbor graph of the latent encodings and gener-
ating structures at the visited nodes, cryoDRGN generated a plau-
sible trajectory of the conformations adopted by the pre-catalytic 
spliceosome (Supplementary Video 4), highlighting the potential of 
single-particle cryo-EM to uncover the conformational dynamics of 
molecular machines.
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Discussion
This work introduces cryoDRGN, a method using neural networks 
to reconstruct 3D density maps from heterogeneous single-particle 
cryo-EM datasets. The power of this approach lies in its ability to 
represent heterogeneous structures without simplifying assump-
tions on the type of heterogeneity. In principle, cryoDRGN is able 
to represent any distribution of structures that can be approxi-
mated by a deep neural network, a broad class of function approxi-
mators for continuous, nonlinear functions28. This flexibility 
contrasts with existing methods that impose limiting assumptions 
on the types of structural heterogeneity present in the sample. For 
example, 3D classification assumes a mixture of discrete structural 
classes, multibody refinement assumes conformational changes 
are composed of user-defined rigid-body motions, and 3DVA 
assumes that heterogeneity is generated from linear combinations 
of density maps. Although these approaches have proven useful, 
their model for heterogeneity is often mismatched with the true 
structural heterogeneity in many systems and thus can introduce 
bias into reconstructions. By contrast, we empirically show that 
the cryoDRGN architecture can model both discrete composi-
tional heterogeneity and continuous conformational changes 
without the aforementioned structural assumptions. For example, 
we discovered heterogeneous states of the RAG complex and Pf80S 
ribosome that were originally averaged out of the homogeneous 
reconstruction. When analyzing the dataset of the assembling E. 
coli LSU, cryoDRGN learned an ensemble of LSU assembly states 
without a priori specification of the number of states or initial 
models as is required for 3D classification. Finally, when analyz-
ing the pre-catalytic spliceosome, we found that the continuous 
conformational changes reconstructed by cryoDRGN lacked the 
rigid-body boundary artifacts from the mask-based multibody 

refinement approach19 (Extended Data Fig. 9) or linear interpola-
tion artifacts from the linear subspace 3DVA model23 (Extended 
Data Fig. 10).

Interpretation of the latent space. A key feature of cryoDRGN is its 
ability to provide a low-dimensional representation of the dataset’s 
heterogeneity given by each particle’s latent encoding. Subject to 
optimization, cryoDRGN organizes the latent space such that struc-
turally related particles are in close proximity. In simulated and real 
datasets, we find that continuous motions are embedded along a 
continuum in latent space (Figs. 3e–g and 6c) and that composi-
tionally distinct states manifest as clusters (Figs. 3h and 5f). These 
empirical results demonstrate that visualization of the distribution 
of latent encodings can be informative in exploring the structural 
heterogeneity within the imaged ensemble and even suggest a pos-
sible interpretation of the latent space as a pseudo-conformational 
landscape. However, we note that cryoDRGN’s objective function 
aims only to reproduce the distribution of structures and does not 
guarantee that the latent space layout (or its 2D visualization) will 
produce interpretable features of the underlying energy landscape. 
Furthermore, structures reconstructed from unoccupied regions 
of the latent space will not in general correspond to true physical 
structures, as cryoDRGN optimizes the likelihood of the observed 
data, and these structures are not observed.

Finally, in real datasets, there may exist images that do not origi-
nate from the standard single-particle image formation model, for 
example, false positives encountered during particle picking. We 
demonstrated the utility of the latent space representation in iden-
tifying such impurities, ice artifacts and other out-of-distribution 
particle images that may be filtered out in subsequent analyses 
(Figs. 5a–d and 6a).
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We emphasize that different datasets have diverse sources of 
heterogeneity, and thus the interpretation of the cryoDRGN latent 
space is highly dataset dependent. We provide interactive analy-
sis tools in the cryoDRGN software for exploring the learned  
latent space.

Visualizing structural trajectories. In addition to encoding par-
ticles in an unsupervised manner, cryoDRGN can reconstruct 3D 
density maps from user-defined positions in latent space. Because 
cryoDRGN learns a generative model for structure, an unlim-
ited number of structures can be generated and analyzed, thus 
enabling visualization of structural trajectories. By leveraging 
the latent encodings of the particle images, users can directly tra-
verse the data manifold and only sample structures from regions 
of latent space with substantial particle occupancy. Indeed, we 
applied a well-established graph-traversal algorithm37 to visual-
ize data-supported motions in the RAG complex, the Pf80S ribo-
some, bL17-independent assembly of the bacterial ribosome and 
the pre-catalytic spliceosome (Supplementary Videos 1–4). We note 
that while this approach is useful in visualizing potential structural 
changes linking one state to another, they do not necessarily reveal 
the kinetically preferred path.

Practical considerations in choosing training hyperparameters. 
Although this method emphasizes an unsupervised approach for 
analyzing structural heterogeneity, cryoDRGN does require that the 
user define the dimensionality of the latent space and the architec-
ture of both the encoder and decoder networks. We find that, in 
practice, training a smaller architecture on downsampled images 
is effective at distinguishing bona fide particles from contaminants 
and imaging artifacts (Figs. 5a–d and 6a), and we recommend 
users initially employ such pilot experiments to filter their dataset. 
Additionally, we find that, in our tested datasets, a 10D latent space 
provides sufficient representation capacity to effectively model 
structural heterogeneity and that this 10D space can be readily visu-
alized with PCA or UMAP. Notably, we recommend the use of such 
a 10D latent space instead of lower-dimensional space, as we found 
that 10D spaces result in much more rapid overall training, which 
is consistent with similar observations of related overparameterized 
neural network architectures38. Finally, users must specify the num-
ber of nodes and layers in the neural networks, hyperparameters 
that limit the complexity of the learned function. Here, we find an 
inverse relationship between neural network size and the achievable 
resolution of a given structure (Fig. 2b). Training larger networks on 
larger images is substantially slower (Fig. 2e), and we recommend 
that users perform an initial assessment using downsampled images 
and relatively small networks before proceeding to high-resolution 
reconstructions. We note that use of excessively complex models 
(that is, large architectures or latent variable dimensions) can lead 
to overfitting, which may be alleviated by standard neural network 
regularization techniques, such as early stopping or using a simpler 
model38. We provide recommended training settings in the cryo-
DRGN software.

Discovering new states using cryoDRGN. CryoDRGN can be used 
to identify novel clusters of structurally related particles, which can 
then be visualized by generating density maps from that region of 
latent space. Indeed, in analyzing the LSU assembly dataset, we 
noted a new structural state, C4, that was missed in traditional 
hierarchical classification. C4 provides structural evidence that a 
functionally critical intersubunit helix (h68) can dock in a native 
conformation in the absence of the central protuberance (Fig. 5i). 
Notably, we could validate the existence of this state by performing 
traditional homogeneous refinement using ~1,000 particles from 
this cluster in the cryoDRGN latent space (Extended Data Fig. 7). 
Although we were able to identify this state from a distinct cluster 

present in the UMAP visualization (Fig. 5g), in general, the defini-
tion of distinct ‘states’ may not be as readily apparent (for example, 
the ‘missing SSU head’ state in Extended Data Fig. 3), and we view 
the unsupervised identification of states from the cryoDRGN struc-
tural ensemble as an exciting area to pursue.

In future work, we envision using cryoDRGN to reveal the num-
ber of discrete classes and their constituent particles and to pro-
duce initial 3D models that could be used as inputs for a traditional 
3D reconstruction. Given the mature state of such tools39,40, this 
data-driven classification approach, followed by traditional homo-
geneous reconstruction, particle polishing and higher-order image 
aberration correction, has the potential to produce high-resolution 
structures of the full spectrum of discrete structural states.

De novo pose estimation. As implemented, cryoDRGN uses pose 
estimates resulting from a traditional consensus 3D reconstruc-
tion. In analyzing four publicly available datasets, we found that 
such consensus pose estimates were sufficiently accurate to gen-
erate meaningful latent space encodings and to produce interpre-
table density maps of distinct structures. It is clear, however, that 
this approach will fail if the degree of structural heterogeneity in the 
dataset results in inaccurate pose estimates. For example, a mixture 
of structurally unrelated complexes will align poorly to a consen-
sus structure, and thus produce poor pose estimates. Notably, our 
framework is differentiable with respect to pose variables, which, in 
principle, could allow on-the-fly pose refinement or de novo pose 
estimation. Future work will explore the efficacy of incorporating 
such features to enable fully unsupervised reconstruction of hetero-
geneous distributions of protein structure from cryo-EM images.
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Methods
The cryoDRGN method. Coordinate-based networks to represent 3D structure. The 
cryoDRGN method performs heterogeneous cryo-EM reconstruction by learning a 
neural network representation of 3D structure. In particular, we use a positionally 
encoded multilayer perceptron (MLP) to approximate the function V : R3þn ! R

I
, 

which models structures as generated from an n-dimensional continuous latent 
space. We refer to this architecture as a ‘coordinate-based neural network’ (refs. 
41,42), as we explicitly model the volume V as a function of Cartesian coordinates.

Without loss of generality, we model volumes on the domain (−0.5, 0.5)3. 
Instead of directly supplying the 3D Cartesian coordinates k to the deep coordinate 
network, each coordinate is featurized with a fixed positional encoding function43 
consisting of D sinusoids with wavelengths following a geometric progression from 
1 to the Nyquist limit:
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� 1; kj 2 k

where D is set to the image size (number of pixels along one dimension of the 
image, that is, a D × D image) used in training. Empirically, we found that excluding 
the highest frequencies of the positional encoding led to better performance when 
training on noisy data, and we provide an option to modify the positional encoding 
function by increasing all wavelengths by a factor of 2π.

Training system. This neural representation of 3D structure is learned via an 
image-encoder–volume-decoder architecture based on the VAE30,44. We followed 
the standard image formation model in single-particle cryo-EM, in which 
observed images are generated from projections of a volume at a random unknown 
orientation, R 2 SO 3ð Þ

I
. We used an additive Gaussian white noise model. Volume 

heterogeneity is generated from a continuous latent space, modeled by the latent 
variable z, where the dimension of z is a hyperparameter of the model.

Given an image X, the variational encoder qξ zjXð Þ
I

 produces a mean and 
variance, μz|X and ΣzjX

I
, statistics that parameterize a Gaussian distribution with 

diagonal covariance, as the variational approximation to the true posterior p(z|X). 
The prior on the latent variable is a standard normal distribution N 0; Ið Þ

I
. The 

positionally encoded MLP is used as the probabilistic decoder, pθ(V|k, z) and 
models structures in frequency space. Given Cartesian coordinate k 2 R3

I
 and 

latent variable z, the probabilistic decoder predicts a Gaussian distribution over 
V(k, z). The encoder and decoder are parameterized with fully connected neural 
networks with parameters ξ and θ, respectively.

Because 2D projection images can be related to volumes as 2D central slices 
in Fourier space29, oriented 3D coordinates for a given image can be obtained by 
rotating a D × D lattice spanning (−0.5, 0.5)2 originally on the x–y plane by R, the 
orientation of the volume during imaging. Then, given a sample out of qξ(z|X) and 
the oriented coordinates, an image can be reconstructed pixel by pixel through the 
decoder. The reconstructed image is then translated by the image’s in-plane shift 
and multiplied by the contrast transfer function (CTF) before it is compared to 
the input image. The negative log likelihood of a given image under our model is 
computed as the mean square error between the reconstructed image and the input 
image. Following the standard VAE framework, the optimization objective is a 
variational lower bound of the model evidence:

L X; ξ; θð Þ ¼ Eqξ zjXð Þ log p Xjzð Þð Þ � βKL qξ zjXð Þjjp zð Þð Þ

where the first term is the reconstruction error estimated with one Monte Carlo 
sample, the second Kullback–Leibler (KL) divergence term is a regularization term 
on the latent representation, and β is an additional hyperparameter, which we set by 
default to 1/|z|. By training on many 2D slices with sufficiently diverse orientations, 
the 3D volume can be learned through feedback from the 2D views. For further 
details, we refer the reader to a preliminary version of the method described in the 
proceedings of the International Conference for Learning Representations41. The 
results presented here employ the training regime described by Zhong et al. using 
previously determined poses from a consensus reconstruction41.

Datasets. Simulated compositionally heterogeneous dataset generation. To generate 
the compositionally heterogeneous dataset, the 30S, 50S and 70S subunits of 
the E. coli ribosome were extracted from PDB 4YBB in PyMOL45. A density 
map of each subunit was generated from the atomic model using the molmap46 
command in Chimera47 at a grid spacing of 1.5 Å per pixel and a resolution of 
4.5 Å. The resulting volume was padded to a box size of D = 256, where D is the 
width in pixels along one dimension. Simulated particle images were generated 
with a custom Python script available in the cryoDRGN software by rotating the 
density map with a random rotation sampled uniformly from SO(3), projecting 
along the z axis and shifting the image with an in-plane translation sampled 
uniformly from (−20, 20)2 pixels. Images were then downsampled to D = 128 by 
Fourier clipping using a custom Python script, corresponding to a Nyquist limit 

of 6 Å. Projection images were multiplied with the CTF in Fourier space, where 
the CTF was computed from defocus values randomly sampled from those given 
in the EMPIAR-10028 dataset (ref. 32), no astigmatism, an accelerating voltage of 
300 kV, a spherical aberration of 2 mm and an amplitude contrast ratio of 0.1. An 
envelope function with a B factor of 100 Å2 was applied. Noise was added with 
a signal-to-noise ratio of 0.1, where the noise-free signal images were defined 
as the entire D × D image. After performing this procedure for each subunit, 
10,000, 15,000 and 25,000 simulated particles of the 30S, 50S and 70S ribosome, 
respectively, were combined.

Simulated conformationally heterogeneous dataset generation. To simulate 
continuous conformational heterogeneity, 50 density maps were generated along a 
1D reaction coordinate defined by rotating a dihedral angle in an atomic model of a 
hypothetical protein complex. Each model was generated at 0.03-radian increments 
of the bond rotation, leading to a total range of 1.5 radians. Density maps were 
generated using the molmap46 command in Chimera47 at a grid spacing of 6 Å per 
pixel and resolution of 12 Å and padded to a box size of D = 128. For the uniform 
dataset, 1,000 projection images were generated for each density map at random 
orientations, and in-plane translations were sampled from (−10, 10)2 pixels. For 
the nonuniform datasets, particles were generated along the reaction according to 
a three-component GMM with means at the 10th, 25th and 40th density map and 
standard deviations of 0.09 and 0.03 radians for the cooperative and noncontiguous 
datasets, respectively. Sampled reaction coordinate values were binned to convert 
into a particle distribution among the 50 generated density maps and clipped at 
values of the reaction coordinate beyond the 50 maps. A total of 50,000 particles 
were generated for each dataset. CTF and noise at a signal-to-noise ratio of 0.1 were 
added to all datasets using the same procedure described above with CTF defocus 
values randomly sampled from the EMPIAR-10028 dataset (ref. 32).

Real cryo-EM datasets. Picked particles and the star file containing CTF parameters 
were downloaded from the Electron Microscopy Public Image Archive (EMPIAR)48 
for datasets EMPIAR-10049, EMPIAR-10028, EMPIAR-10076 and EMPIAR-10180. 
Particle images were downsized to the image size used in training by clipping in 
Fourier space with a custom Python script available in the cryoDRGN software.

Consensus reconstructions. Homogeneous 3D reconstruction of the Pf80S 
ribosome (EMPIAR-10028) was performed in cryoSPARC version 2.4 (ref. 16) using 
the ab initio reconstruction job followed by the homogeneous refinement job with 
default parameters. The final reconstruction reported a gold-standard (GS)FSC0.143 
(ref. 49) resolution of 3.1 Å with a tight mask and 4.1 Å when unmasked.

Homogeneous 3D reconstruction of the bL17-depleted ribosome assembly 
intermediates (EMPIAR-10076) was performed as above, leading to a final 
structure with a GSFSC0.143 resolution of 3.2 Å with a tight mask and 4.8 Å when 
unmasked.

Homogeneous 3D reconstruction of the RAG complex (EMPIAR-10049) was 
performed as a ‘Homogeneous Refinement (NEW!)’ job in cryoSPARC version 
2.15 with all default settings, including C1 symmetry. The asymmetric PC map of 
the RAG complex was used as an initial model (EMDB-6489) low-pass filtered by 
30 Å. The final structure had a GSFSC0.143 resolution of 3.6 Å with a tight mask and 
4.6 Å when unmasked.

Poses from a consensus reconstruction of the pre-catalytic spliceosome were 
obtained from the star file deposited in the EMPIAR-10180 dataset.

CryoDRGN homogeneous reconstruction. CryoDRGN decoder networks with 
no input latent variable were trained for 50 epochs on full-resolution images of the 
RAG complex (D = 192, 1.23 Å per pixel) and the Pf80S ribosome (D = 360, 1.34 Å 
per pixel). The tested architectures were MLPs with ReLU activations, where the 
network size was three hidden layers with a width of 128 nodes (denoted 128 × 3), 
256 × 3, 512 × 3, 1,024 × 3 or 1,024 × 10. Image poses were set to poses obtained 
from a consensus reconstruction in cryoSPARC, as described above16. Networks 
were trained on minibatches of eight images using the Adam optimizer with a 
learning rate of 0.0001. Once training was complete, the decoder network was 
evaluated on the 3D coordinates of a D × D × D voxel array spanning (−0.5, 0.5)3, 
where D is the image size in pixels along one dimension. For visualization in Fig. 
2, the RAG complex density maps were sharpened by −54 Å2 and −127.4 Å2 for 
the cryoDRGN and cryoSPARC maps, respectively, based on a Guinier analysis49 
performed in a custom Python script; both the cryoSPARC and cryoDRGN 
density maps of the Pf80S ribosome were sharpened using the published B factor 
of −80.1 Å2.

Map-to-map FSC. FSC curves were computed between the cryoSPARC density 
maps and the cryoDRGN density maps using a custom Python script available in 
the cryoDRGN software. Real-space masks were defined by first thresholding the 
cryoDRGN volume at half of the 99.99th percentile density value. The mask was 
then dilated by 25 Å from the original boundary, and a soft cosine edge was used to 
taper the mask to 0 at 15 Å from the dilated boundary.

CryoDRGN heterogeneous reconstruction. Model training. A summary of 
the datasets, hyperparameters and runtimes for all cryoDRGN heterogeneous 
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reconstruction experiments is given in Supplementary Table 1. CryoDRGN 
encoder–decoder networks were trained from their randomly initialized values for 
each single-particle cryo-EM dataset. Image poses used for training were either 
the ground-truth poses for simulated datasets or poses obtained from a consensus 
reconstruction as described above. All networks were trained on minibatches 
of eight images using the Adam optimizer with a learning rate of 0.0001. After 
training, the dataset images were evaluated through the encoder to obtain the 
latent encoding for each image. We define the latent encoding as the maximum 
a posteriori value of qξ(z|X) predicted by the encoder.

Latent space visualization. For latent spaces with dimension greater than 2, the 
distribution of latent encodings were visualized with standard dimensionality 
reduction techniques, such as PCA and UMAP35. PCA projections of latent space 
particle distributions were computed using the implementation provided by 
scikit-learn50. Two-dimensional UMAP35 embeddings were computed using version 
0.4.1 of the Python implementation (https://github.com/lmcinnes/umap) with 
the default settings of k = 15 for the k-nearest neighbors graph and a minimum 
distance parameter of 0.1. Automated tools to analyze and visualize the latent space 
given the outputs of model training are provided in the cryoDRGN software.

Density map generation. Density maps were generated for a given value of the 
latent variable z by evaluating the trained decoder on z and the 3D coordinates of 
a D × D × D voxel array spanning (−0.5, 0.5)3. To generate representative samples 
from different regions of the latent space for higher dimensional latent spaces 
(|z| > 1), we performed k-means clustering of the dataset’s latent encodings to 
partition the latent space into k regions. A representative density map for each 
region was generated at the ‘on-data’ cluster center; the latent encoding closest in 
Euclidean distance to the k-means cluster center was defined as the ‘on-data’ cluster 
center. Automated tools to generate k representative density maps following this 
procedure are provided in the cryoDRGN software.

Heterogeneous reconstruction of simulated datasets. For each simulated 
heterogeneous dataset, a 1D latent variable model was trained for 100 epochs. The 
encoder architecture was 256 × 3, and the decoder architecture was 512 × 5. The 
image poses used for training were the ground-truth image poses. After training 
on the uniform simulated dataset, structures shown in Fig. 3c were generated at the 
5th, 23rd, 41st, 59th, 77th and 95th percentile values of the latent encodings and 
sharpened by a B factor of −100 Å2. After training on the compositional simulated 
dataset, the structures shown in Fig. 3d were generated at the k-means cluster 
centers after performing k-means clustering with k = 3 on the latent encodings and 
sharpened by a B factor of −100 Å2. Spearman correlation was computed using the 
implementation provided in the scipy version 1.5.2 Python package (https://www.
scipy.org).

Per-image FSC. For simulated datasets for which the ground-truth distribution 
of structures is known, ‘per-image’ FSC curves can be computed between 
cryoDRGN-reconstructed density maps and the ground-truth density maps to 
quantitatively evaluate the reconstructed ensemble. To compute a per-image FSC, 
an FSC curve was computed between the density map generated by the cryoDRGN 
decoder at the value of the latent variable predicted for a given particle image and 
the ground-truth density map used to generate the image. One hundred images, 
randomly sampled according to the ground-truth distribution of structures, were 
used in the assessment of each of the simulated datasets. No real-space mask was 
used to compute the FSC.

Heterogeneous reconstruction of the RAG complex (EMPIAR-10049). A 10D 
latent variable model was trained on full-resolution particle images from the 
EMPIAR-10049 dataset (D = 192, 1.23 Å per pixel) and their consensus reconstruction 
poses for 25 epochs. The encoder and decoder architectures were 1,024 × 3.

Density map generation. After training, k-means clustering with k = 100 was 
performed on the predicted latent encodings for the dataset, and volumes 
were generated at the ‘on-data’ cluster centers using the decoder network. 
Six structurally diverse representative structures were manually selected for 
visualization in Fig. 4a.

Traditional heterogeneous refinement. To validate the heterogeneous RSS and NBD 
conformations observed in cryoDRGN, the six selected density maps, low-pass 
filtered by 20 Å, were used as initial models for a heterogeneous refinement job in 
cryoSPARC version 2.15.

Heterogeneous reconstruction of the 80S ribosome (EMPIAR-10028). Pilot 
experiments. A 10D latent variable model was trained on downsampled images 
(D = 128, 3.78 Å per pixel) from the EMPIAR-10028 dataset and their consensus 
reconstruction poses for 50 epochs. The encoder and decoder architectures were 
256 × 3.

Particle filtering. After training, k-means clustering with k = 20 was performed on the 
predicted latent encodings for the dataset. One cluster contained 860 particles that 

were outliers when viewing the projected encodings along the first and second PCs. 
This observation was reproducible, and the particles belonging to the outlier cluster 
from either of two replicates (960 particles in total) were removed from the dataset.

High-resolution training. After particle filtering, a 10D latent variable model was 
trained on a random 90% of the remaining 104,280 images (D = 256, 1.88 Å per 
pixel) for 25 epochs. The encoder and decoder architectures were 1,024 × 3.

Density map generation. After training, k-means clustering with k = 50 was 
performed on the predicted latent encodings for the dataset, and volumes were 
generated at the ‘on-data’ cluster centers using the decoder network. Representative 
structures of the rotated state and the unrotated state were manually selected for 
visualization in Fig. 4b. A representative structure of the missing head group state 
was manually selected for visualization in Extended Data Fig. 3. The numbered 
k-means cluster centers shown in Extended Data Fig. 3a, originally arbitrarily 
ordered, were reordered based on hierarchical clustering of the latent encodings 
with Euclidean distance metric and average linkage.

Validation with traditional reconstruction. To validate the 40S-rotated state, we 
selected 4,889 particles as the cluster from k-means clustering with k = 20 that was 
separated along PC1 (Extended Data Fig. 4). These particles were then input to a 
homogeneous refinement job in cryoSPARC version 2.15. The cryoDRGN density 
map, low-pass filtered by 30 Å, was used as the initial model.

Heterogeneous reconstruction of the assembling 50S ribosome 
(EMPIAR-10076). Pilot experiments. A 1D and a 10D latent variable model 
were trained on downsampled images (D = 128, 3.3 Å per pixel) from the 
EMPIAR-10076 dataset with poses from a consensus reconstruction for 50 epochs. 
The encoder and decoder architectures were 256 × 3.

Particle filtering. For the 1D experiment, particles with z ≤ −1 were removed from 
subsequent analysis. For the 10D experiment, a five-component, full-covariance 
GMM was fit to the latent encodings using scikit-learn50, and particles from the 
outlier cluster were removed. The outlier cluster was identified by visualizing the 
magnitude of the latent encodings (Extended Data Fig. 4). The intersection of 
both filtered particles stacks was used for subsequent analysis. Two-dimensional 
classification of the kept and removed particles was performed in cryoSPARC 
version 2.4 (ref. 16) using all default options except for the number of 2D classes, 
which was set to 20. Ab initio reconstruction of the kept and removed particles was 
performed in cryoSPARC version 2.4 (ref. 16) using all default options.

High-resolution training. A 10D latent variable model was trained on a random 
90% of the remaining 97,031 images (D = 256, 1.7 Å per pixel) for 50 epochs. The 
encoder and decoder architectures were 1,024 × 3. Two additional replicates were 
run, one with the exact settings from a different random initialization and a second 
with latent variable dimension of |z| = 8.

Density map generation. After training, the dataset’s latent encodings were viewed 
in 2D with UMAP35. Density maps corresponding to the major and minor 
assembly states were generated at the ‘on-data’ mean latent encoding for each class, 
that is, ẑM ¼ 1

Mj j
P
i2M

z i

I

, where M is the set of particles assigned to a given class in 

the published 3D classification.

Map-to-map FSC. The map-to-map FSC was computed between the cryoDRGN 
and published density map for each minor class. Density maps were aligned in 
Chimera, and a loose real-space mask (obtained as described above) was applied 
before computing an FSC curve.

Reproducibility analysis. For each replicate, a five-component, full-covariance 
GMM was fit to the UMAP embeddings using scikit-learn50. UMAP axes were 
negated to facilitate visual comparison. Label assignments were permuted to ensure 
consistent assignments between replicates. Clustering consistency was computed as 
the percentage of particles with identical GMM labels.

New assembly state C4. Particles corresponding to the new assembly state were 
manually selected from the UMAP embeddings with an interactive lasso tool in 
a custom visualization script available in the cryoDRGN software, the outline of 
which is shown in the Fig. 5f inset. The mean latent encoding of the resulting 1,113 
selected particles was used to generate the structure representative for this new 
assembly state.

Validation of C4 with traditional refinement. The particles associated with class 
C4 (D = 128, 3.3 Å per pixel) were then input to a homogeneous refinement job in 
cryoSPARC version 2.15. The cryoDRGN density map, low-pass filtered to 30 Å, 
was used as the initial model.

Heterogeneous reconstruction of the pre-catalytic spliceosome 
(EMPIAR-10180). Pilot experiments. A 10D latent variable model was trained on 
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downsampled images (D = 128, 4.25 Å per pixel) from the EMPIAR-10180 dataset 
for 50 epochs. The encoder and decoder architectures were 256 x 3. Poses were 
obtained from the consensus reconstruction values given in the consensus_data.
star deposited in EMPIAR-10180.

Particle filtering. The UMAP embeddings showed multiple clusters where the 
largest cluster corresponded to fully formed pre-catalytic spliceosomes. Particles 
corresponding to other clusters were removed from subsequent analyses by 
first performing k-means clustering with k = 20 on the latent encodings, and by 
removing k-means clusters for which the structure did not resemble the fully 
formed pre-catalytic spliceosome (11 of 20 k-means clusters in one replicate, and 
ten of 20 clusters in a second replicate).

High-resolution training. A 10D latent variable model was trained on a random 
90% of the remaining 155,247 images (D = 256, 2.1 Å per pixel) for 50 epochs. The 
encoder and decoder architectures were 1,024 × 3.

Density map generation. After training, the dataset’s latent encoding was viewed 
in 2D with UMAP and PCA. Density maps in Fig. 6d were generated at the latent 
encoding values along the PC1 axis at five equally spaced points between the 5th 
and 95th percentile of PC1 values. Density maps in Supplementary Fig. 1 were 
generated at the latent encoding values along the PC2 axis at five equally spaced 
points between the 5th and 95th percentile of PC2 values. Density map generation 
along PC axes was implemented with a custom script in the cryoDRGN software.

Latent space graph traversal for generating trajectories. Trajectories were generated 
by first creating a nearest-neighbors graph from the latent encodings of the images, 
in which a neighbor was defined if the Euclidean distance was below a threshold 
computed from the statistics of all pairwise distances. We chose a value for each 
dataset such that the average number of neighbors across all nodes was five. Edges 
were then pruned such that a given node did not have more than ten neighbors. 
Then, Djikstra’s algorithm37 was used to find the shortest path along the graph 
connecting a series of anchor points, and density maps were generated at the z value 
of the visited nodes. Anchor points were either defined manually or set to be the 
‘on-data’ cluster centers after performing k-means clustering of the latent encodings.

For the graph traversal of the RAG complex in Supplementary Video 1, we 
used the latent encodings of the six density maps shown in Fig. 4a as the anchor 
points. For the graph traversal of the Pf80S ribosome in Supplementary Video 
2, we used ten randomly chosen latent encodings as the anchor points out of the 
k-means cluster centers with k = 20 that are shown before the graph traversal. 
For the graph traversal of the assembling ribosome in Supplementary Video 3, 
we used the latent encodings of the minor assembly states following the three 
assembly pathways given in Fig. 7 of Davis et al.12. For the graph traversal of the 
pre-catalytic spliceosome in Supplementary Video 4, we used the latent encodings 
of the k-means cluster centers with k = 20 as the anchor points. All density map 
figures and trajectories were prepared with ChimeraX51 and are viewed at identical 
isosurface levels for a given model unless otherwise specified. CryoDRGN’s 
graph-traversal algorithm is provided in the cryoDRGN software.

3D Variability Analysis. 3DVA23 was performed in cryoSPARC version 2.15 
on the 139,722 particles and their consensus poses comprising the filtered 
EMPIAR-10180 dataset used in cryoDRGN analysis. Three variability modes were 
solved with all default options, and the low-pass filter resolution was set to 7 Å. 
3DVA’s per-particle latent encodings were extracted from the cryoSPARC metadata 
file. Spearman correlation was computed using the implementation provided in 
the scipy version 1.5.2 Python package (https://www.scipy.org). To visualize the 
3DVA component 1 trajectory in Extended Data Fig. 10, the consensus density 
map was combined with the component 1 eigen-volume at five equally spaced 
points between the first and 99th percentile value of the 3DVA component 1 latent 
encoding distribution.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Trained cryoDRGN models and generated volumes were deposited in 
Zenodo at https://doi.org/10.5281/zenodo.435528452. Input files for training 
(excluding particle stacks) were deposited in Zenodo at https://doi.org/10.5281/
zenodo.4412072 and are also available at https://www.github.com/zhonge/
cryodrgn_empiar53. We used the following publicly available datasets: 
EMPIAR-10049 (cryo-EM structures of a synaptic RAG1–RAG2 complex), 
EMPIAR-10028 (cryo-EM structure of a P. falciparum 80S ribosome bound to the 
anti-protozoan drug emetine), EMPIAR-10076 (modular assembly of the large 
bacterial ribosome) and EMPIAR-10180 (structure of a pre-catalytic spliceosome). 

The simulated heterogeneous datasets were deposited in Zenodo at https://doi.
org/10.5281/zenodo.435528452.

Code availability
CryoDRGN software and analysis scripts are implemented in custom software 
deposited in Zenodo at https://doi.org/10.5281/zenodo.4355743 and are also 
available at https://www.github.com/zhonge/cryodrgn54.
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Extended Data Fig. 1 | Per-image FsC curves between ground-truth maps and density maps from cryoDRGN trained on simulated heterogeneous 
datasets. For each dataset, we compute 100 ‘per-image FSC curves’ between generated and ground-truth density maps (Methods). Images are sampled 
at equally spaced percentiles along the reaction coordinate for the Uniform, Cooperative, and Noncontiguous datasets. For the Compositional dataset, the 
per-image FSC for 20, 30, and 50 randomly sampled images of the 30S, 50S, and 70S ribosome, respectively, are shown. No mask is used in computing 
the FSC.
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Extended Data Fig. 2 | RaG complex density maps reconstructed by cryoDRGN and by heterogeneous refinement in cryosPaRC. a, Front (top) and 
back (bottom) view of the six cryoDrGN density maps of the rAG complex from Fig. 4b. b, Density maps from 3D classification in cryoSPArC using the 
cryoDrGN density maps in (a) as initial models. Gold-standard FSC resolution and number of particles used in reconstruction are noted. c) Two side views 
of the density maps from 3D classification in (b), focusing on the rSS and NBD.
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Extended Data Fig. 3 | Missing head group of the Pf80s ribosome. a, UMAP visualization of latent space encodings of eMPIAr-10028 particles with 
50 sampled points shown in black. Sampled points are ordered according to distances in latent space (Methods). Visual inspection of the 50 volumes 
generated at the depicted points reveals 3 volumes with the 40S in a rotated state (purple) and 6 volumes with portions of the 40S head region missing 
(pink). b, Density map of the 80S ribosome with the missing head group reconstructed by cryoDrGN (pink) compared with the density maps from Fig. 
4c showing the canonical (blue) and 40S-rotated (purple) forms of the 80S ribosome. The density maps are generated from points 32, 4, and 1 in panel A 
from left to right.
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Extended Data Fig. 4 | Validation of Pf80s rotated state with cryosPaRC. a, PCA and UMAP visualization of the cryoDrGN latent space representation 
of Pf80S particle images with 4,889 particles separated along PC1, selected with k-means clustering, colored in purple (Methods). b, Density map from 
cryoSPArC homogeneous refinement (purple) using the 4,889 particles selected in (a). The density map is also shown superimposed with the cryoDrGN 
unrotated state (blue) and annotated as in Fig. 4c. c, Gold standard FSC (GSFSC) curve between independent half-maps of the cryoSPArC refinement of 
the Pf80S rotated state and map-to-map FSC between the cryoDrGN and cryoSPArC density map of the Pf80S rotated state. Dotted lines indicate 0.5 
and 0.143 cutoffs.
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Extended Data Fig. 5 | Filtering of particles from the assembling ribosome dataset. a, UMAP visualization of the 10-D latent encodings from cryoDrGN as 
in Fig. 5b, colored by cluster after fitting a 5-component Gaussian mixture model. The cluster that was removed from subsequent analysis is colored orange. 
b, UMAP visualization of (a), colored by the magnitude of the latent encodings, ||z||. c, Nine randomly sampled particle images from eMPIAr-10076 with 
latent encoding magnitude ||z|| > 10 as predicted from cryoDrGN training in (a,b). each image is 419.2 Å along each side. d, Table summarizing dataset 
filtering. e,f, 2D classification and ab initio reconstruction of the 34,868 removed particles. g,h, 2D classification and ab initio reconstruction of the 97,031 
kept particles.
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Extended Data Fig. 6 | Minor Lsu assembly states reconstructed by cryoDRGN. a, Density maps of the LSU minor assembly states reconstructed by 
cryoDrGN. each cryoDrGN structure is generated at mean of the latent encoding of particles with the corresponding class assignment from Davis et al.12. 
b, Map-to-map FSC curves between the generated cryoDrGN density maps and the published density map from Davis et al.12. Published resolutions for 
assembly states B-e ranged between ~4-5 Å. Dotted lines indicate 0.5 and 0.143 cutoffs. c,d, reproduction of the cryoDrGN latent space shown in Fig. 5g, 
colored by minor assembly state (c), or viewed in separate panels (d).
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Extended Data Fig. 7 | Validation of Lsu class C4 with cryosPaRC. a, Density map from cryoSPArC homogeneous refinement of the 1,113 particles 
selected from the cryoDrGN latent representation that constitute class C4 (right), compared with the density map generated by cryoDrGN (left) 
from Fig. 5i. rrNA helix 68 is circled in red. b, Gold standard FSC (GSFSC) curve between independent half-maps of the cryoSPArC reconstruction and 
map-to-map FSC between the cryoDrGN and cryoSPArC maps shown in (a). Dotted lines indicate 0.5 and 0.143 cutoffs.
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Extended Data Fig. 8 | Reproducibility of cryoDRGN’s latent space representation of the assembling ribosome. a, UMAP visualization of the latent 
encodings from replicate runs of cryoDrGN trained on the filtered particles of eMPIAr-10076. Particle embeddings are colored by major assembly state 
assigned from 3D classification in Davis et al12. b, UMAP visualization of (a), colored by cluster after fitting a 5-component Gaussian mixture model on 
the UMAP embeddings. c,d, Consistency of the GMM labeling between replicates reported as the percentage of particles with identical labels (c) and the 
confusion matrix of GMM cluster assignments (d).
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Extended Data Fig. 9 | Comparison of multi-body refinement and cryoDRGN of the pre-catalytic spliceosome. a, Visualization of a rigid-body trajectory 
from multibody refinement of the pre-catalytic spliceosome. Snapshots are extracted from the trajectory along PC1 of rigid-body orientations, showing 
a large-scale motion of the SF3b subcomplex. The masks that define the rigid-body decomposition of the complex are shown on the right. The circle 
highlights a helix that breaks at the boundary between bodies where the rigid-body assumption no longer holds. Adapted from Video 3 of Nakane et al.19 
and density maps and masks deposited in eMPIAr-10180. b, Alternate view of cryoDrGN’s PC1 traversal in Fig. 6. CryoDrGN learns the same overall 
motion of the SF3b subcomplex, however its neural network representation lacks the helix-breaking artifact.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of cryosPaRC’s 3D variability analysis and cryoDRGN. a, Density map of the consensus reconstruction and 2D 
projections of the top three 3DVA variability components (that is, eigen-volumes) that form a linear basis describing structural heterogeneity of the 
pre-catalytic spliceosome. b, 3DVA latent encodings of particles from the filtered eMPIAr-10180 dataset. c, Comparison of 3DVA component 1 latent 
encodings and PC1 of the cryoDrGN 10D latent encodings from Fig. 6c. Correlation indicates Spearman correlation. d, 3DVA component 1 trajectory at the 
depicted points in (b). e, Alternate view of the density maps from the cryoDrGN PC1 trajectory in Fig. 6d.
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