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Algebraic program analyses compute information about a program’s behavior by first (a) computing a valid

path expressionÐi.e., a regular expression that recognizes all feasible execution paths (and usually more)Ðand

then (b) interpreting the path expression in a semantic algebra that defines the analysis. There are an infinite

number of different regular expressions that qualify as valid path expressions, which raises the question

łWhich one should we choose?ž While any choice yields a sound result, for many analyses the choice can have

a drastic effect on the precision of the results obtained. This paper investigates the following two questions:

(1) What does it mean for one valid path expression to be łbetterž than another?

(2) Can we compute a valid path expression that is łbetter,ž and if so, how?

We show that it is not satisfactory to compare two path expressions E1 and E2 solely by means of the languages

that they generate. Counter to one’s intuition, it is possible for L(E2) ( L(E1), yet for E2 to produce a less-precise

analysis result than E1Ðand thus we would not want to perform the transformation E1 → E2. However, the

exclusion of paths so as to analyze a smaller language of paths is exactly the refinement criterion used by

some prior methods.

In this paper, we develop an algorithm that takes as input a valid path expression E, and returns a valid

path expression E ′ that is guaranteed to yield analysis results that are at least as good as those obtained using

E. While the algorithm sometimes returns E itself, it typically does not: (i) we prove a no-degradation result for

the algorithm’s base caseÐfor transforming a leaf loop (i.e., a most-deeply-nested loop); (ii) at a non-leaf loop

L, the algorithm treats each loop L′ in the body of L as an indivisible atom, and applies the leaf-loop algorithm

to L; the no-degradation result carries over to (ii), as well. Our experiments show that the technique has a

substantial impact: the loop-refinement algorithm allows the implementation of Compositional Recurrence

Analysis to prove over 25% more assertions for a collection of challenging loop micro-benchmarks.
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1 INTRODUCTION

Tarjan [1981b] introduced the idea of using regular expressions as a kind of łmost-general program-
analysis method.ž This style of analysis is also sometimes referred to as algebraic program analysis
[Farzan and Kincaid 2013; Kincaid et al. 2017]. Specific program-analysis problems are solved by
first solving the path-expression problem: a program’s control-flow graph (CFG) is considered to
be a finite-state machine in which CFG nodes are states, and each edge is labeled by an alphabet
symbol unique to that edge. Tarjan’s path-expression method [Tarjan 1981a] creates for each node
n a regular expression Rn whose language, L(Rn), is the set of all paths from the CFG’s start node
to n. The łclientž program-analysis problem is then solved by evaluating each regular expression
Rn bottom-up, using an interpretation in which the regular-expression operators +, ·, and ∗Ðnow
treated as syntactic operatorsÐare interpreted as some suitable (sound) operations, ⊕, ⊗, and ⊛,
respectively, in the analysis domain.
The idea of applying transformations to the intermediate representation (IR) of a program as a

way to improve the results of static analysis has a long history (see ğ7). For instance, many people
have taken advantage of loop unrolling as a way to potentially improve analysis precision. In the
nomenclature of algebraic program analysis, the question can be phrased as follows:1

There are many different regular expressions that represent the same set of
concrete-action sequences; are some of these regular expressions better than
others? In other words, can the evaluation of one regular expression produce more
precise analysis results, compared with a structurally differentÐbut equivalentÐ
regular expression?

(1)

Not surprisingly, the answer is łYes. The structure of the regular expression matters.ž
In this paper, we focus on a particular sub-problem related to loops: given a regular expression

of the form R = (r1 + . . . + rn)
∗ and a set of forbidden (infeasible) subpaths, compute a new regular

expression R′ such that (a) the forbidden subpaths are eliminated from R′, and (b) the precision of
the analysis results obtained with R′ are at least as good as those obtained with R.

Past work that has studied refinement has worked only with requirement (a). For that situationÐ
studied in the context of iterative program analysis under the name control-flow refinement [Balakr-
ishnan et al. 2009; Flores-Montoya and Hähnle 2014; Gulwani et al. 2009; Sharma et al. 2011]Ðthe
solution exploits the observation that the syntax of a loop (or the structure of the IR that represents
the loop) may cause more paths through the loop to be considered than are actually possible. A
set of infeasible paths can be characterized by a set of forbidden subwords; consequently, the
language of paths not containing forbidden subwords is regular, and therefore recognized by a
regular expression, say F . One can then obtain the analysis results for the loop by evaluating F
instead of R.

Counter to one’s intuition, however, the analysis of F can yield a less-precise summary of the loop
than merely evaluating (r1 + . . .+ rm)

∗. (See ğ2.2.) This conundrum suggests the following problem:
find a regular expression R′ that is between F and RÐi.e., L(F ) ⊆ L(R′) ( L(R)Ðand which gives
analysis results that are no worse than those obtained with R. In this paper, we give an algorithm
for computing such an R′.
As just mentioned, it is unsatisfactory to compare regular expressions solely by means of the

languages that they generate: the comparison must account for the fact that they are both interpreted
in the abstract domain A in use. In particular, we wish to establish that path expression R′ yields
A-analysis results that are at least as good as those obtained with R. Moreover, we wish to do so
by some means other than (i) creating R′, (ii) evaluating R′ in A, and (iii) comparing the result

1łEquivalentž is used in the sense that both expressions represent the same set of concrete-action sequences.
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Refinement of Path Expressions for Static Analysis 45:3

to the value of R evaluated in A. Instead, we wish to reason about the relative precision of the
A-interpretations of R and R′. We address this issue by axiomatizing the properties of an abstract
domain that influence the relative precision obtained using different regular expressions. Our name
for the formalism that we introduce is łpre-Kleene algebraž (PKA) (ğ3). By assuming that abstract
domain A satisfies the PKA axioms, we can use algebraic reasoning to prove properties of the
transformation algorithm.

The second problem addressed in this paper is how to use our understanding of the simple case
above in a program analyzer. There are two relevant problems: (1) how to generalize the results
to arbitrary regular expressions, and (2) how to recognize infeasible sub-paths. We exploit the
compositional nature of algebraic program analysis to provide answers to both questions. The
result is a generic algorithm that provably does not degrade the precision of any algebraic program
analysis meeting our conditions, and, as our experiments show, often improves the precision.

Our experiments show that the technique has a substantial impact: the loop-refinement algorithm
allows the implementation of Compositional Recurrence Analysis (CRA) [Farzan and Kincaid 2015]
to prove over 25% more assertions for a collection of challenging loop micro-benchmarks.

Contributions. Our work makes the following contributions:
• We prove a no-degradation result (Thm. 4.5) for the algorithm’s base case, which transforms a
leaf loop.
• At non-leaf loops, the algorithm applies the leaf-loop algorithm greedily, bottom-up (ğ5). We
show that the non-degradation result carries over to the non-leaf loops, as well. Consequently,
our bottom-up algorithm for refinement is guaranteed to yield analysis results that are at least
as good as those obtained without refinement (Thm. 5.2).
For an algebraic-analysis framework, the benefits of this approach are three-fold:

(1) The algorithm can be used to (often) improve the precision of any algebraic program analysis
that uses an abstract domain that satisfies the PKA axioms.

(2) The refinement method can be incorporated in a uniform way. Refinement is invoked at the
level of the pre-existing star operator, which only has to consider regular expressions of
the form R∗, where R has already been analyzed. Moreover, checks for infeasible paths in R
can be made in the abstract domain (e.g., using an SMT solver). The infeasible paths can be
used to refine R∗ to create an alternative expression R′. Then R′ is evaluated in place of R∗,
and the result is used in evaluating the parent expression.

(3) Thanks to the analysis method developed by Kincaid et al. [2017], the algorithm also applies
to programs with recursive procedure calls.

• Wehave incorporated an implementation of our refinement algorithm into the algebraic-analysis
tool described by Farzan and Kincaid [2015]. ğ6 presents empirical results that demonstrate the
practical benefits of our method.

ğ2 motivates the problem of path-expression refinement by showing how the precision of an
example analysis can be increased by soundly modifying the path-expression that is used. It also
gives an example showing that naive refinement can lead to worse analysis results. ğ3 gives
background on Kleene algebras, algebraic program analysis, and control-flow refinement, and
introduces the formalism of pre-Kleene algebras. ğ7 discusses related work.

2 OVERVIEW

In this section, we present two motivating examples based on a Tarjan-style analysis. We consider
an example abstract domain equipped with extend, combine, and iteration operators, denoted by
⊗, ⊕, and ⊛, respectively. To be concrete, we consider an abstract domain in which each element
represents a transition relation: let x denote a finite set of program variables, and let each element
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45:4 John Cyphert, Jason Breck, Zachary Kincaid, and Thomas Reps

x = 0; y = 50;

while (x < 100) {

x = x + 1;

if (x > 50)

y = y + 1;

}

i = 0; j = 0;

while (∗) {

if (pos > 0){

if (∗){ //A

i = i + 1; j = j + 1;

pos = 1;

} else{ //B

i = i + 1; j = j + 1;

pos = 0;

}

} else{ //C

i = i + 1; j = j + 1;

pos = 1;

}

}

(a) (b)

Fig. 1. (a) A multi-path loop that shows the benefits of refinement on static-analysis results. (b) A multi-path

loop for which refinement can produce less-precise static-analysis results.

be a łtwo-vocabularyž formula ϕ(x,x ′) in the existential fragment of Presburger arithmetic over the
variables x , plus a set of primed copies x ′. Such a formula represents a relation between pre-states
(over x ) and post-states (over x ′). The ⊗ operation is relational composition, and ⊕ is disjunction,

ϕ ⊗ψ = ∃x ′′.ϕ(x,x ′′) ∧ψ (x ′′,x ′) ϕ ⊕ψ = ϕ ∨ψ .

For the ⊛ operator, we consider a two-step process. To compute ϕ⊛, first compute the best approx-
imation of ϕ as an octagonal relationw(x,x ′) using optimization modulo theories [Li et al. 2014;
Sebastiani and Tomasi 2012]; then compute an existential Presburger formula representing the
transitive closure ofw(x,x ′) using the algorithm of Bozga et al. [2009].

2.1 A Transformation that Leads to an Improved Result

Consider the program in Fig. 1(a). There are two paths through the loop’s body. Let A denote the
path in which the then branch is avoided, and B denote the path that follows the then branch. Let
ϕA and ϕB be the transition formulas for paths A and B, respectively.

ϕA
def
= (x < 100 ∧ x ′ = x + 1 ∧ x ′ ≤ 50 ∧ y ′ = y)

ϕB
def
= (x < 100 ∧ x ′ = x + 1 ∧ x ′ > 50 ∧ y ′ = y + 1)

The simplest path expression that represents the set of paths from just before the loop to just after

the loop is R
def
= (A + B)∗. To analyze the loop, we evaluate R with A and B replaced by ϕA and

ϕB , respectively; + replaced by ⊕; and ∗ replaced by ⊛: (ϕA ⊕ ϕB )
⊛
= (ϕA ∨ ϕB )

⊛. To evaluate
(ϕA ∨ ϕB )

⊛, we first abstract ϕA ∨ ϕB to create an over-approximating formula for the loop-body’s
transition relation. In particular, we create the most-precise over-approximation of ϕA ∨ ϕB that is
in conjunctive form:

wbody = (x < 100 ∧ x ′ − x = 1 ∧ 1 ≥ y ′ − y ∧ y ′ − y ≥ 0).

Inwbody, we have only an inequality that relates y and y ′.

Even with the most-precise computation of the closure w⊛

body
, the best property that can be

deduced for the program’s final state from (x = 0 ∧ y = 50) ⊗w⊛

body
⊗(x ≥ 100) is x = 100 ∧ 100 ≥

y ≥ 50. However, it is not difficult to see that x = 100 ∧ y = 100 always holds after the program
executes.
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The main issue is that (A + B)∗ describes a larger set of paths than the set of feasible execution
paths. In particular, as observed by Sharma et al. [2011], once the predicate x > 50 is true on some
iteration, it will continue to be true on all later iterations: path A will never execute after path B.
One way that this property can be discovered is by showing that the formula

ϕB ⊗ ϕA = (x < 100 ∧ x + 1 > 50 ∧ x + 1 < 100 ∧ x + 2 ≤ 50 ∧ x ′ = x + 2 ∧ y ′ = y + 1)

is unsatisfiable, which can be established easily by an SMT solver. Consequently, we can refine the

regular expression R to R′
def
= A∗B∗, which is both (i) sound with respect to the program’s semantics,

and (ii) more closely represents the feasible execution paths of the program. In other words, the set
of feasible paths of the program is contained in L(A∗B∗), and L(A∗B∗) ( L((A + B)∗).

Now consider the evaluation of (x = 0 ∧ y = 50) ⊗ ϕ⊛
A
⊗ ϕ⊛

B
. It happens that ϕA and ϕB are

octagons already, so ϕ⊛
A

and ϕ⊛
B
can be computed via the methods of Bozga et al. [2009]. (x =

0 ∧y = 50) ⊗ ϕ⊛
A
yields (x = 50 ∧y = 50) and (x = 50 ∧y = 50) ⊗ ϕ⊛

B
becomes (x = 100 ∧y = 100).

Thus the analysis of A∗B∗ allows us to conclude x = 100 ∧ y = 100 after the loop. This example
shows that a simple rewrite of the regular expression being analyzed can produce a more precise
static-analysis result.

2.2 A Transformation that Leads to a Worse Result

Consider the program in Fig. 1(b). The loop body has three paths, which we callA, B, andC . The loop

can be described by the regular expression R1
def
= (A+B+C)∗. Let ϕA, ϕB , and ϕC be two-vocabulary

formulas representing the transition relations for paths A, B, and C , respectively. We have

ϕA
def
= (pos > 0 ∧ i ′ = i + 1 ∧ j ′ = j + 1 ∧ pos′ = 1)

ϕB
def
= (pos > 0 ∧ i ′ = i + 1 ∧ j ′ = j + 1 ∧ pos′ = 0)

ϕC
def
= (pos ≤ 0 ∧ i ′ = i + 1 ∧ j ′ = j + 1 ∧ pos′ = 1)

Let us now evaluate R1 in the abstract domain defined at the beginning of this section:
(ϕA ⊕ ϕB ⊕ ϕC )

⊛. When we abstract the disjunction ϕA ∨ ϕB ∨ ϕC we obtain the formulawBody ,

wBody
def
= (i ′ = i + 1 ∧ j ′ = j + 1 ∧ 0 ≤ pos′ ∧ pos′ ≤ 1).

The closure of this formula,w⊛

Body
, along with the fact that i = 0 ∧ j = 0 before the loop, implies

that i = j holds after the loop.
Now consider a plausible alternative way of analyzing the program in Fig. 1(b). By inspecting

the individual paths of the loop, we observe that ϕA ⊗ ϕC , ϕB ⊗ ϕA, ϕB ⊗ ϕB , and ϕC ⊗ ϕC are all
unsatisfiable. Using this observation, we refine the original regular expression R1 to obtain a new

regular expression, R2
def
= (ϵ +C)(A + BC)∗(ϵ + B) whose words never contain the subsequences

. . .AC . . ., . . . BA . . ., . . . BB . . ., and . . .CC . . .. Note that L(R2) ( L(R1), and that R2 has fewer
disjunctions that appear under a ∗ operator. For these reasons, we might expect that R2 would
produce a more-precise result than R1. Counter-intuitively, R2 produces a less-precise result.
To see why, consider the evaluation of R2 in the abstract domain:
(1 ⊕ ϕC ) ⊗ (ϕA ⊕ ϕB ⊗ ϕC )

⊛ ⊗ (1 ⊕ ϕB ). We first compute

ϕBC
def
= ϕB ⊗ ϕC = (pos > 0 ∧ i ′ = i + 2 ∧ j ′ = j + 2 ∧ pos′ = 1).

We then combine ϕA with ϕBC to obtain the formula:

ϕA+BC
def
= (i ′ = i + 1 ∧ j ′ = j + 1 ∧ pos ≥ 0 ∧ pos′ = 1) ∨

(i ′ = i + 2 ∧ j ′ = j + 2 ∧ pos ≥ 0 ∧ pos′ = 1).
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45:6 John Cyphert, Jason Breck, Zachary Kincaid, and Thomas Reps

As a next step, we abstract ϕA+BC into the formulaw ′:

w ′
def
= (i + 1 ≤ i ′ ∧ i ′ ≤ i + 2 ∧ j + 1 ≤ j ′ ∧ j ′ ≤ j + 2 ∧ pos′ = 1).

Notice thatw ′ does not imply that i and j increase by the same amount. The analysis continues by
extending (1 ⊕ ϕC ) first with (w

′)⊛ and then with (1 ⊕ ϕC ). From the resulting formula, together
with the fact that i = 0 ∧ j = 0 holds before the loop, after the loop one is able to establish only
that i ≤ 2 ∗ j and j ≤ 2 ∗ i . In particular, we can no longer draw the conclusion that i = j holds,
which the evaluation of the łcruderž regular expression R1 succeeded in establishing.

This example demonstrates that an arbitraryÐeven plausibleÐrefinement of a path expression
can actually degrade analysis results, compared with using the original path expression. In general,
degradation arises because of an interaction between the expressiveness of the abstract domain in
use, and the refinement step. In the example above, the common increments to i and j in the three
original disjuncts are lost because in A + BC , A involves one loop iteration, whereas BC involves
two iterations. To retain the information that the increments to i and j are łsynchronized,ž the
formula w ′ that abstracts ϕA+BC would need to have either the subformula j ′ − i ′ = j − i or the
subformula ∃k .i ′ = i + k ∧ j ′ = j + k . The first subformula uses four variables, and each conjunct
of the second subformula uses three variables; however, the octagon domain can only express
conjunctions of two-variable inequalities.

2.3 Transformation in the Presence of Nested Loops

In the preceding examples, we applied transformations to regular expressions that do not contain
nested stars (i.e., leaf loops); these expressions were derived from programs that do not contain
nested loops. In general, however, we also want to analyze programs that do contain nested loops.
We approach such problems by computing a regular expression that has nested stars. Beginning
with an innermost occurrence of a star operatorÐi.e., a subexpression of the form R∗, where R
is star-free)Ðwe apply our transformation, compute a summary, and substitute the summary in
place of the innermost star. When this process has been performed for all innermost occurrences
of star in the body of a non-innermost occurrence of star, we can analyze the body of the latter
occurrence as if the body were star-free. We repeat this process until we have summarized the
entire procedure.

Example 2.1. Consider again the program in Fig. 1(a). As explained earlier in this section,

the paths in the loop body can be refined from R
def
= (A + B)∗ to R′

def
= A∗B∗. Suppose that

the loop had been nested inside an enclosing loop, and that the path expression for the loop-

nest had the form E
def
= (α((β + γ ) (A + B)∗

︸   ︷︷   ︸
R

(δ + ν ))∗µ). Then the refinement of R would cre-

ate E1
def
= (α ((β + γ )

R′

︷︸︸︷
A∗B∗ (δ + ν ))∗

︸                       ︷︷                       ︸
S

µ). The leaf-loop algorithm would then be applied to S
def
=

((β + γ )A∗B∗(δ + ν ))∗, with A∗B∗ treated as an indivisible atom. This approach is tantamount to
transforming S into łlet c = A∗B∗ in ((β + γ )c(δ + ν ))∗

︸                ︷︷                ︸
T

,ž and applying the leaf-loop algorithm to

T
def
= ((β + γ )c(δ + ν ))∗. �

As shown in the earlier examples of this section, the leaf-loop algorithm requires us to have some
way to check for and remove infeasible paths. The summarization of inner loops gives us a way to
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perform infeasibility checks even in the presence of nested loops, by using (the interpretations of)
the summary values in place of starred subexpressions. For instance, in Ex. 2.1, we could multiply
out (β + γ )c(δ + ν ) to obtain the sum of products βcδ + βcν + γcδ + γcν , and then test the abstract
values of all words in {βcδ , βcν,γcδ ,γcν } · {βcδ , βcν,γcδ ,γcν } for pair-wise infeasibility.

3 BACKGROUND

3.1 Regular Languages and Algebra

Definition 3.1. The set of regular expressions over an alphabet Σ is defined by the following
grammar:

regexp
Σ
::= 0 | 1 | a ∈ Σ | regexp

Σ
+ regexp

Σ
| regexp

Σ
· regexp

Σ
| regexp∗

Σ

(Because Σ will always be implicit from context, the subscript on regexp will henceforth be omitted.)
For simplicity, we sometimes write ła ·bž as łab.ž The star height of a regular expression R ∈ regexp
is the maximum nesting depth of a star in R.
A regular expression R ∈ regexp denotes a regular language, L(R), defined as follows:

L(R)
def
=





∅ if R = 0
{ϵ} if R = 1
{a} if R = a ∈ Σ
L(R1) ∪ L(R2) if R = R1 + R2
L(R1) ⊗ L(R2) if R = R1 · R2
∞⋃

i=0

L(R1)
i if R = (R1)

∗

where ϵ denotes the empty word (of length 0), ⊗ denotes language concatenation: L1 ⊗ L2
def
=

{xy | x ∈ L1 ∧ y ∈ L2}, and L(R1)
i denotes the i-fold concatenation of L(R1) with itself (e.g.,

L(a∗) = ∅ + {a} + {aa} + {aaa} + . . .).

We now give the axiomatizations of Kleene algebras and a family of strictly weaker structures,
which we call pre-Kleene algebras.

Both of these structures have łcombine,ž łextend,ž and łiterationž operators. The following
definition for a Kleene algebra was given by Kozen [1994].

Definition 3.2. A Kleene algebra (KA), ⟨A,+, ·, ∗, 0, 1⟩, is a set A (called the carrier) equipped
with two binary operations · and +, a unary operation ∗, and distinguished elements 0 and 1, and
such that the following conditions hold.
(1) (Semiring) The binary operators · and + satisfy the following axioms, which define a semiring

(a) (Associativity of · and +) a + (b + c) = (a + b) + c and a(bc) = (ab)c , for all a,b, c ∈ A
(b) (Commutativity of +) a + b = b + a, for all a,b ∈ A
(c) (Distributivity) a(b + c) = ab + ac and (b + c)a = ba + ca, for all a,b, c ∈ A
(d) (Identity elements) There exists an element 0 ∈ A such that, for all a ∈ A, a + 0 = 0 + a = a.

There exists an element 1 ∈ A such that, for all a ∈ A, a1 = 1a = a
(e) (Annihilation) a0 = 0a = 0, for all a ∈ A

(2) (Idempotence) It is also required that + be idempotent: a + a = a, for all a ∈ A
(3) (Iteration) The above axioms imply that relation ≤ defined by a ≤ b⇔a + b = b is a partial

order. Using this partial order, the ∗ operator satisfies the following axioms
(a) 1 + a(a∗) ≤ a∗, for all a ∈ A
(b) 1 + (a∗)a ≤ a∗, for all a ∈ A
(c) If a, x ∈ A with ax ≤ x , then a∗x ≤ x
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45:8 John Cyphert, Jason Breck, Zachary Kincaid, and Thomas Reps

(d) If a, x ∈ A with xa ≤ x , then xa∗ ≤ x

Two important examples of Kleene algebras are (1) Reg
Σ
Ðthe algebra of regular languages over

an alphabet ΣÐwhere the carrier is the set of regular languages, + is union, · is concatenation, ∗ is
Kleene-star, 0 is the empty language, and 1 is the singleton language containing the empty word;
and (2) RelXÐthe algebra of relations over a set XÐwhere the carrier is the set of binary relations
on X , + is union, · is relational composition, ∗ is reflexive transitive closure, 0 is the empty relation,
and 1 is the identity relation.

Definition 3.3. A pre-Kleene algebra (PKA), ⟨A,+, ·, ∗, 0, 1⟩, is a setA equipped with two binary
operations · and +, a unary operation ∗, and distinguished elements 0 and 1, and such that the
Semiring and Idempotence axioms hold, and additionally we have the following iteration axioms:
(1) (Reflexivity) 1 ≤ a∗, for all a ∈ A
(2) (Extensivity) a ≤ a∗, for all a ∈ A
(3) (Transitivity) a∗ · a∗ = a∗, for all a ∈ A
(4) (Monotonicity) if a,b ∈ A with a ≤ b then a∗ ≤ b∗. Equivalently a∗ ≤ (a + b)∗, for all a,b ∈ A
(5) (Unrolling) (an)∗ ≤ a∗ for n ∈ N and a ∈ A, where a0 = 1 and an = a · . . . · a︸    ︷︷    ︸

n times

The abstract domain from ğ2 is an example of a pre-Kleene algebra. Two more examples follow.
All three examples are pre-Kleene algebras, but none are Kleene algebras.

Example 3.4. Fix a set of variables x and a set of primed copies x′. Define an algebraic structure
ACI = ⟨F , ⊕, ⊗,⊛, 0, 1⟩, inspired by the analysis of Ancourt et al. [2010], as follows:
• The carrier F consists of all formulas in the existential fragment of Presburger arithmetic over
the symbols x ′ and x ′ (i.e., transition formulas), quotiented by logical equivalence.

• ϕ ⊗ψ
def
= ∃x ′′.ϕ(x,x ′′) ∧ψ (x ′′,x ′) is relational composition.

• ϕ ⊕ψ
def
= ϕ ∨ψ is disjunction.

• 0
def
= false.

• 1
def
=

∧
i x
′
i = xi .

• ϕ⊛ is defined as follows.
ś Let pre(ϕ) be the convex hull of the formula (∃x ′.ϕ), which can be computed using the
algorithm of Farzan and Kincaid [2015]. The formula pre(ϕ) is a precondition of the loop ϕ,
and must hold on entry.

ś Similarly, let post(ϕ) be the convex hull of the formula (∃x .ϕ).
ś For each variable xi , introduce a new variable δi , which we use to represent the change in
xi over the action of ϕ. Compute the convex hull of the formula ∃x,x ′.(ϕ ∧

∧
i δi = x

′
i − xi ),

and write it as Aδ ≥ b. Let ∆(ϕ) be the formula ∆(ϕ)
def
= Ax ′ ≥ x + kb

ś Finally, define ϕ⊛
def
= ∃k .

(
(k = 0 ∧

∧
i x
′
i = xi ) ∨ (k ≥ 1 ∧ pre(ϕ) ∧ post(ϕ))) ∧ ∆(ϕ)

)
.

Showing that ACI satisfies the semiring axioms, idempotence of +, and reflexivity, extensivity, and
transitivity of ⊛ is straightforward. It is also not difficult to see that ACI fails to satisfy the KA
axioms for iteration, because it fails to compute exact transitive closure.
The pre-Kleene algebra monotonicity and unrolling axioms are more subtle. First, observe that

the natural order ≤ in ACI is entailment (ϕ ⊕ψ = ψ if and only if ϕ |= ψ ). So the monotonicity law
is that if ϕ |= ψ , then ϕ⊛ |= ψ⊛. This holds because the iteration operator is defined in terms of
convex hulls of projections, and both projection and hull are monotone. To show that the unrolling
axiom holds, let n be arbitrary. Clearly we have pre(ϕn) |= pre(ϕ) and post(ϕn) |= post(ϕ); it remains
only to show that Bx ′ ≥ x +c |= Ax ′ ≥ x +nb, where ∆(ϕ) = Ax ′ ≥ x +b and ∆(ψ ) = Bx ′ ≥ x +c .
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Since ϕ |= Ax ′ ≥ x + b, we must have ϕn |= Ax ′ ≥ x + nb; since ∆(ϕn) entails every inequation of
the form bx

′ ≥ bx + c that is entailed by ϕn , we have the result.

Example 3.5. Fix a set of variables x and a set of primed copies x ′. Let P be a finite set of predicate
symbols in some theory T with a decidable existential fragment (e.g., the theory of bitvectors,
arrays, etc.) over the variables x . Define an algebraic structure PAP = ⟨F , ⊕, ⊗,⊛, 0, 1⟩, as follows:
• F is the set of existential T -formulas over x and x ′

• ⊕, ⊗, 0, and 1 are as in Ex. 3.4

• ϕ⊛
def
=

∧
{p(x) ⇒ p(x ′) : p ∈ P : ϕ |= p(x) ⇒ p(x ′)}

It is straightforward to check that PAP forms a pre-Kleene algebra.

We are interested in determining which facts are true in Kleene algebras and pre-Kleene algebras.
However, we are also interested in viewing expressions over ·,+, and ∗ as syntactic objects, becauseÐ
as we see from the examples in ğ2Ðthe structure of expressions matters for analysis. To make a
notational distinction, we use

E |=KA R = R
′

to denote that R = R′ holds in any Kleene algebra that satisfies each equation in a set E. We use
similar notation for pre-Kleene algebras. For example, for both Kleene algebras and pre-Kleene
algebras, we have a + (b + c) = (a + b) + c . Because a + (b + c) and (a + b) + c are syntactically
different, we no longer write a + (b + c) = (a +b)+ c . Instead we write |=KA a + (b + c) = (a +b)+ c ,
and |=PKA a + (b + c) = (a + b) + c . Note that |=KA R = R

′ if and only if L(R) = L(R′) [Kozen 1994].
The axioms of pre-Kleene algebras are implied by the axioms of Kleene algebras, so every Kleene

algebra is also a pre-Kleene algebra; however, the converse is not true. For example,

1 + aa∗ = a∗ (2)

is a property that holds in any Kleene algebra, but does not necessarily hold in a pre-Kleene algebra.
The motivation for introducing pre-Kleene algebras is to capture a broader class of program

analyses, for which the axioms of Kleene algebras are too strong. In particular, the Kleene algebra
iteration axioms imply that for any element a, a∗ must be equal to the least fixed-point of the
function fa(x) = 1 + ax . For many abstract domains of interest, least fixed-points of such functions
are not computable (and may not even exist). The weaker iteration axioms for pre-Kleene algebras
allow us to study domains in which the ∗ operator is imprecise (i.e., a∗ is a post fixed-point of fa ).

Naturally, one may ask if the iteration axioms for pre-Kleene algebras are still too strong. We note
that there is general strategy (see Kincaid [2018]) for designing operators that over-approximate the
transitive closure of transition formulas, which always results in an iteration operator satisfying
the pre-Kleene algebra iteration axioms. Namely, if we compute R⊛ by (i) computing the best
abstraction of R within some class of transition relations for which transitive closure is computable,
and (ii) computing the exact transitive closure of that abstraction, then R⊛ satisfies the pre-Kleene
algebra axioms.

The gap between Eqn. (2), which holds in KA, and the weaker property ł1+aa∗ = a∗,ž which holds
in PKA, provides evidence that PKA captures a fundamental property of program analysis vis a vis
program transformations: the analysis of an unrolled loop (ł1 + aa∗ž) can give more precise results
than the original loop (ła∗ž). In contrast, the KA axioms do not allow algebraic reasoning about
such possible improvements because they treat an unrolled loop (ł1 + aa∗ž) as being equivalent to
the original loop (ła∗ž).
The axiomatization of pre-Kleene algebras is relaxed enough to capture some interesting do-

mains, such as the three introduced above, while being expressive enough to allow for non-trivial
refinements.
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3.2 Algebraic Program Analysis

We directly connect our interest in regular expressions and program analysis by considering static
analyses in the style of Tarjan [1981b], sometimes referred to as algebraic program analysis. An
algebraic analysis stands in contrast to the classic iterative style of program analysis; it takes an
algebraic (rather than order-theoretic) approach to approximating repetitive behavior. The essential
difference is that fixed-point computation is external to the abstract domain in the classic style and
internal to the abstract domain in the algebraic approach. In other words, an algebraic analysis does
not directly implement a fixed-point computation, instead it assumes that the domain is equipped
with some internal method for approximating iteration. The need to supply an extra operation
imposes an additional burden on the domain designer; on the other hand, the domain designer is
then free to implement their ownmethod for approximating iterative behavior, which could be some
direct computation or some standard iterative fixed-point-finding process. By having an explicit
iteration operator, the operators of an algebraic analysis have a direct correspondence with the
three standard regular-expression operators. Therefore, a static-analysis task can be performed by
reinterpreting regular expressions as domain transformers, and evaluating a set of path expressions
for a program in a bottom-up manner.

Let Σ be some alphabet. Suppose that we have a structure with the signatureK = ⟨K, ⊕, ⊗,⊛, 0, 1⟩,
and a function KJ·K : Σ → K . We extend KJ·K in a syntax-directed way to interpret regular
expressions over Σ in K :

KJR1 + R2K = KJR1K ⊕ KJR2K KJR1 · R2K = KJR1K ⊗ KJR2K KJR∗K = (KJRK)⊛

KJ0K = 0 KJ1K = 1

Note that we treat regular expressions as syntactic objects; L(R1) = L(R2) does not necessarily
imply that KJR1K = KJR2K.

Let TR = ⟨TR,∪, ◦, ∗, ∅, id⟩ be the Kleene algebra of transition relations. In this case,∪ is relational
union, ◦ is relational composition, and ∗ is reflexive transitive closure. The additive identity for TR
is the empty relation ∅, and the multiplicative identity is the identity relation id .

We use a transition relation to represent the input/output relationship of each member of some
alphabet of actions Σ. We assume TR has a corresponding semantic function, TRJ·K : Σ → TR,
which is extended to regular expressions over Σ in the manner described above. If we take Σ to be
the set of program actions, then TRJRK denotes the input/output relationship of the program paths
described by R. In general, it is uncomputable to determine the exact value of TRJRK. Thus, we use
an abstract domain D to approximate TR.
We consider an algebraic analysis to consist of an abstract domain D = ⟨D, ⊕, ⊗,⊛, 0, 1⟩, a

semantic function DJ·K : Σ→ D, and a concretization function γ : D → TR. We assume that there
are effective procedures for the evaluation of the operators in D. The concretization function γ
defines which abstract elements of D over-approximate which elements of TR. That is, c ⊆ γ (a)
indicates that a ∈ D over-approximates c ∈ TR.

Definition 3.6. We consider a (sound) algebraic program analysis over an alphabet Σ to consist of
a triple (D,DJ·K,γ ), where
(1) γ (0) = ∅
(2) γ (1) ⊇ id
(3) TRJAK ⊆ γ (DJAK), for all A ∈ Σ
(4) γ (a1) ∪ γ (a2) ⊆ γ (a1 ⊕ a2); γ (a2) ◦ γ (a1) ⊆ γ (a1 ⊗ a2); γ (a)

∗ ⊆ γ (a⊛) for all a1,a2,a ∈ D.

Defn. 3.6 gives a correspondence between the operators of TR and the operators of D, and allows
a sound result to be computed in a bottom-up manner:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 45. Publication date: January 2019.



Refinement of Path Expressions for Static Analysis 45:11

Lemma 3.7. Let ⟨D,DJ·K⟩ be a sound interpretation over an alphabet Σ. Then for any R ∈ regexp
Σ
,

we have TRJRK ⊆ γ (DJRK).

The example analysis in ğ2 gives an example of an algebraic analysis. For that analysis we have
that D is the set of two-vocabulary transition formulas in Presburger arithmetic. The sequence
operator, ⊗, is composition as defined in ğ2; the combine operator, ⊕, is logical or; and the iteration
operator, ⊛, abstracts a formula to an octagon, and then directly computes the closure of the
octagon.
Many standard program-analysis problems can be formulated as an algebraic analysis. In par-

ticular, any summary-based interprocedural analysis [Sharir and Pnueli 1981] can be cast as an
algebraic analysis, including predicate abstraction [Ball and Rajamani 2001]; affine-relation analysis
[Elder et al. 2014; King and Sùndergaard 2010; Müller-Olm and Seidl 2004, 2007]; problems in the
IFDS [Reps et al. 1995], IDE [Sagiv et al. 1996], and Weighted Pushdown System [Reps et al. 2005]
frameworks; and polyhedral analysis [Cousot and Halbwachs 1978; Jeannet and Serwe 2004]. All of
these examples are KAs, except for polyhedral analysis and one of the variants of affine-relation
analysis [Elder et al. 2014; King and Sùndergaard 2010], for which distributivity of · over + fails to
hold.

3.3 Rewriting Regular Expressions

Consider an algebraic analysis, with abstract domain D, where the goal is to approximate TRJRK
for some set of program paths, L(R). As described in the previous section, an over-approximation
can be obtained merely by evaluating R over D: DJRK. However, the structure of R may lead to
an imprecise analysis result: perhaps there is another suitable expression R′ that leads to a better
analysis result. If such an R′ exists, we would like to evaluate R′ instead of R.
We must consider when it is łsuitablež to analyze R′ instead of R. Namely, if we are going to

evaluate DJR′K instead of DJRK, we need to make sure that DJR′K is still a sound analysis.

Definition 3.8. A rewrite, R → R′, is sound if TRJRK ⊆ TRJR′K.

This definition says that a rewrite is sound if the semantics of the new path-expression approximates
the semantics of the old path-expression. This definition ensures that the analysis of the new regular
expression still approximates the original task because, by Defn. 3.6, TRJR′K ⊆ γ (DJR′K). Thus, if
TRJRK ⊆ TRJR′K, then TRJRK ⊆ γ (DJR′K). Ideally, we would like to have a regular expression that
leads to as precise an analysis result as possible; the challenge would be to find a most-precise
regular expression among the set of all sound rewritesÐthat is, łmost precisež in terms of γ (DJRK)
and ⊆. Unfortunately, such an expression may not exist (and even if it does, it can only be computed
under strong assumptions about the abstract domain). The main problem is that the set of considered
rewrites is too large: there is an infinite space of possible rewrites, so how do we select one?
One approach for selecting a sound rewrite is based on removing infeasible words from R.

Suppose that we have discovered some set of infeasible words Inf. That is, for every w ∈ Inf we
have TRJwK = ∅. Consider creating the following regular expression: Rinf =

∑
w ∈Infw . We can now

create the rewrite R → R′, by computing a regular expression R′ with L(R′) = L(R) ∩ L(Rinf)
c .

The rewrite is sound, because L(R) = L(R′) ∪ L(Rinf) implies TRJRK = TRJR′K ∪ TRJRinfK = TRJR′K.
Written another way, R′ is a sound rewrite because E |=KA R

′
= R, where E is the set of equations

E = {w = ∅ | w ∈ Inf}. We call this type of rewrite a refinement.

Definition 3.9. Let E be some set of equations denoting infeasible paths. A rewrite, R → R′, is a
refinement if E |=KA R

′
= R and L(R′) ⊆ L(R).

Refinements provide a natural method for producing alternative analysis tasks, which in practice
often give better analysis results. However, as shown in the analysis of Fig. 1(b) an arbitrary

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 45. Publication date: January 2019.



45:12 John Cyphert, Jason Breck, Zachary Kincaid, and Thomas Reps

refinement can actually produce worse results. One could imagine rectifying this issue by creating
an analysis framework that refines a given analysis task R to a series of refined regular expressions
R1, . . . ,Rk , using methods in the style of previous work on control-flow refinement [Balakrishnan
et al. 2009; Flores-Montoya and Hähnle 2014; Gulwani et al. 2009; Sharma et al. 2011]. The analysis
would then analyze each expression Ri , as well as the original expression R, and then combine the
results. We do not find this approach satisfactory, because:
(1) It blows up the number of analysis tasks.
(2) We do not assume our domains have a "meet" operator, so there might not be a meaningful

method to combine the results.
(3) Arbitrary refinements do not give us any analytical understanding of what makes one regular

expression better than alternative expressionsÐfor the purpose of analysis.
Unfortunately, without any structure on γ or domain D, we cannot understand the analysis

precision obtained using a given regular expression, just from the regular expression itself. We
remedy this situation by requiring D to have some algebraic properties that turn out to give some
traction on the analysis-precision question.

We assume that each abstract domain D satisfies the axioms of a pre-Kleene algebra

(PKA).

In essence, we use the concept of a PKA to axiomatize the precision properties of abstract domains.
Under our domain assumption, we have

if |=PKA R ≤ R
′ then DJRK ≤ DJR′K.

We can now use the order ≤ of a pre-Kleene algebra to compare the relative analysis precision of
regular expressions.

Theorem 3.10. Let Σ be an alphabet, and let R,R′ ∈ regexp
Σ
with |=PKA R′ ≤ R. Then for any

algebraic program analysis (D,DJ·K,γ ) over Σ, we have γ (DJR′K) ⊆ γ (DJRK); i.e., γ is monotone with
respect to ≤PKA.

Proof. |=PKA R′ ≤ R is equivalent to saying |=PKA R′ + R = R, which means DJR′K ⊕DJRK =
DJRK. By Defn. 3.6 γ (DJR′K) ∪ γ (DJRK) ⊆ γ (DJR′K ⊕DJRK) = γ (DJRK). Therefore, γ (DJR′K) ⊆
γ (DJR′K) ∪ γ (DJRK) ⊆ γ (DJRK). �

Thm. 3.10 gives us the analytical understanding we have been looking for. Thm. 3.10 says that if
|=PKA R

′ ≤ R holds, then the analysis of R′ will be at least as precise asÐand possibly more precise
thanÐthe analysis of R.

In this paper, we use ≤PKA to drive the design of a procedure that, given an initial analysis
task R and a set of infeasible paths E, refines R to R′ with (i) E |=KA R

′
= R and L(R′) ⊆ L(R)

(refinement, Defn. 3.9) and (ii) |=PKA R
′ ≤ R (potentially precision-improving, Thm. 3.10).

(3)

By using a refinement procedure that satisfies the specification above, we can analyze R′ instead
of R: as long as our domain is a pre-Kleene algebra, we are guaranteed that R′ will give no worse
results, compared with R.
Note that a procedure that satisfies the above specification is still useful for a domain that is

not a pre-Kleene algebra: such a refinement method will produce a sound analysis task R′ from R

whenever E |=KA R
′
= R, for some infeasible paths E. However, if the domain is not a pre-Kleene

algebra, then |=PKA R
′ ≤ R does not imply thatDJR′K ≤ DJRK, and the conclusion of Thm. 3.10 does

not hold. Even though we lose the guarantee that precision does not degrade with domains that
are not pre-Kleene algebras, in practice we find that our refinement procedure improves analysis
results (see ğ6).
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4 REFINING INNER LOOPS

In this section, we address the problem of refining an innermost-loop based on infeasible paths: we
are given an expression R∗ where R is star-free; we would like to refine R∗ to R′ without having R′

decrease analysis precision. We use the order of a pre-Kleene algebra to say when a refinement does
not decrease precision. That is, we want a method that refines R∗ while still having |=PKA R

′ ≤ R∗,
because by Thm. 3.10 we know the analysis of R′ will be at least as good as the analysis of R∗.
Given R∗, we first take R to a different form. Using the distributivity axioms of a pre-Kleene

algebra, we rewrite R into the form a1 + a2 + . . . + ak , for some set of words A
def
= {a1,a2, . . . ,ak }.

Due to the axioms of the operators + and · in a pre-Kleene algebra, |=PKA R
∗
= (a1 + . . . + ak )

∗; i.e.,
taking R∗ to (a1 + . . . + ak )

∗ does not change analysis precision. Once R∗ is in this form, it becomes
easy to determine an expression of infeasible word sequences, Rinf. Because we have γ (0) = ∅, if
DJai ,1 · . . . · ai ,nK = 0 then TRJai1 · . . . · ain K = ∅. For instance, we can test all sequences of a small
number of elements {ai } ⊆ A.

We now consider the problem of refining the loop (a1 + . . . + ak )
∗ into another expression R′ by

removing infeasible sequences in L(Rinf), while maintaining that |=PKA R
′ ≤ R∗.

For the remainder of this section, we will consider {a1,a2, . . . an} to be the alphabet under
consideration; we are interested in words over {a1,a2, . . . an}, where each ai is considered to have
no łinternalž structure.

4.1 Form for Refinements

Before we present the algorithm for refinement, we first ask the following question. We are going
to refine (a1 + . . . + ak )

∗ to R′ with |=PKA R′ ≤ (a1 + . . . + ak )
∗. What are the properties that R′

must satisfy?

Definition 4.1. We say that a regular expression R over some alphabet S satisfies the equal-
unrolling property if R has star-height 0 or 1 and for every starred sub-expression (Ri )

∗ of R, we
have that every pair of wordsw1 andw2 in L(Ri ), |w1 | = |w2 |.

In other words, every word in L(Ri ) must have the same length. An alternative way to express
Defn. 4.1 is as follows: R satisfies the equal-unrolling property if R can be written in the following
form

R =
∑

i

R′i ,1(Ri ,1)
∗ · . . . · R′i ,l (Ri ,l )

∗ (4)

where each R′i , j is a ∗-free expression over the alphabet S and Ri , j =
∑
w ∈S ′w , S ′ ⊆ (S)ni , j for some

ni , j , and (S)
n denotes the set {ai ,1 · · · · · ai ,n |ai , j ∈ S}.

Theorem 4.2. |=PKA R
′ ≤ (a1 + . . . + ak )

∗ if and only if R′ satisfies the equal-unrolling property.

Proof. (⇐) Suppose that R′ satisfies the equal-unrolling property. Then R′ can be written in the
form shown in Eqn. (4). Consider some R′i , j . Since R

′
i , j is ∗-free, then there exists a longest word for

R′i , j . Let N be the length of this longest word. By the definition of ≤ in a pre-Kleene algebra, we

must have

|=PKA R
′
i , j ≤

N∑

i=0

(a1 + . . . + ak )
i ≤

N∑

i=0

((a1 + . . . + ak )
i )∗ ≤

N∑

i=0

(a1 + . . . + ak )
∗ ≤ (a1 + . . . + ak )

∗

With the last three steps due to extensivity (2), unrolling (5), and idempotence (2) respectively.
Now consider some Ri , j =

∑
w ∈S ′w , where S ′ ⊆ Sni , j for some ni , j . By the definition of ≤ in a pre-

Kleene algebra, |=PKA Ri , j ≤ (a1 + . . .+ak )
ni , j . Thus, due to monotonicity of ∗ (4) and unrolling (5),

|=PKA (Ri , j )
∗ ≤ ((a1+ . . .+ak )

ni , j )∗ ≤ (a1+ . . .+ak )
∗. Because we have |=PKA R

′
i , j ≤ (a1+ . . .+ak )

∗
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and |=PKA (Ri , j )
∗ ≤ (a1 + . . . + ak )

∗ for every i and j , we can conclude |=PKA R
′ ≤ (a1 + . . . + ak )

∗

due to transitivity (3) and idempotence (2).
(⇒) [sketch] Suppose that the property |=PKA R

′ ≤ (a1 + . . . + ak )
∗ holds. By the completeness

of first-order logic, there must exist a proof of this fact, denoted by ⊢PKA R′ ≤ (a1 + . . . + ak )
∗.

The axioms for the proof system are the axioms of pre-Kleene algebra (in equational form). Other
relevant inference rules are the usual ones for first-order logic with equality, including transitivity,
reflexivity, and symmetry rules and functional consistency (e.g., ⊢PKA E1 = E

′
1 and ⊢PKA E2 = E

′
2

then ⊢PKA E1 + E2 = E
′
1 + E

′
2).

We now prove, using induction on the height of the proof tree for the judgement ⊢PKA E = E ′,
that E satisfies the equal-unrolling property iff E ′ does, and E and E ′ have the same star-height.
To prove the base case, we consider the pre-Kleene axioms in equational form. Then we simply
check that if the left-hand side of each equality axiom satisfies the equal-unrolling property then
the right-hand side does as well. For example, due to extensivity (2) we have ⊢PKA a

∗
+ a = a∗ and

both the left-hand and right-hand sides of the equality either satisfy the equal-unrolling property
or both do not, and both sides have the same star-height. Checking the other axioms follows a
similar pattern.
Now for the inductive step. The induction hypothesis says that for every sub-proof-tree with

root ⊢PKA F = F ′ in the proof ⊢PKA E = E ′, if F satisfies the equal-unrolling property iff F ′ does,
and F and F ′ have the same star-height. Consider the last step of the proof ⊢PKA E = E ′. Consider
the inference rule

⊢PKA E1 = E
′
1 ⊢PKA E2 = E

′
2

⊢PKA E1 + E2 = E
′
1 + E

′
2

Now suppose E1 + E2 satisfies the equal-unrolling property. Then E1 and E2 must also satisfy it as
well. By the induction hypothesis, it must be the case that E ′1 and E

′
2 also satisfy the equal-unrolling

property. Therefore, E ′1 + E
′
2 must also satisfy the equal-unrolling property. Also, E1 has the same

star-height as E ′1 and E2 has the same star-height as E ′2. Therefore, the star-height of E1 + E2 must
be the same as the star-height fo E ′1 + E

′
2. The reasoning for the · inference rule is similar. Finally,

suppose that the last step of ⊢PKA E = E ′ was of the form ⊢PKA (E1)
∗
= (E ′1)

∗ under the assumption
⊢PKA E1 = E

′
1. Suppose that (E1)

∗ satisfies the equal-unrolling property. Because the equal unrolling
property only applies to expressions of star-height 0 or 1, E1 must be star-free and all word lengths
be equal. By the induction hypothesis E ′1 must also be star-free. It then becomes the case that words
in L(E ′1) must have the same length. Thus (E ′1)

∗ has star-height 1 and satisfies the equal-unrolling
property. What we have shown is that if we have ⊢PKA E = E ′ and E satisfies the equal-unrolling
property then so must E ′, and E has the same star-height as E ′. Our initial assumption of the (⇒)
direction was that ⊢PKA R

′ ≤ (a1+. . .+ak )
∗. Equivalently, ⊢PKA (a1+. . .+ak )

∗
= (a1+. . .+ak )

∗
+R′.

(a1 + . . . + ak )
∗ satisfies the equal-unrolling property and has star-height 1. Therefore, R′ must

have star-height 0 or 1 and also satisfy the equal-unrolling property. �

Essentially, Thm. 4.2 says that for any R′′ with |=PKA R
′′ ≤ (a1 + . . . + ak )

∗, R′′ can be rewritten
into a sum-of-products form R′, and R′ must satisfy two important properties. One, R′ must have a
star-height no greater than 1. Two, for all the ∗-expressions R∗i , j in R

′, the bodies of the expressions

must be a sum of words over {a1, . . . ,ak }, where each word has the same length. As an example,
using Thm. 4.2 we can directly conclude that |=PKA A

∗B∗ ≤ (A + B)∗, because A∗B∗ has the form
shown in Eqn. (4). Also, Thm. 4.2 shows that ̸ |=PKA (ϵ +C)(A+ BC)

∗(ϵ + B) ≤ (A+ B +C)∗ because
A and BC come from unrolling (A + B +C), but they come from unrollings of different lengths.
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4.2 Refinement Graphs

Consider the problem of refining the loop (a1+ . . .+ak )
∗ to another expression R′ by removing some

infeasible sequences denoted by an expressionRinf, whilemaintaining that |=PKA R
′ ≤ (a1+. . .+ak )

∗.
Note that it is possible to generate an expression R′′ that removes all the infeasible sequences from
Rinf by finding an R′′ such that L(R′′) = L((a1 + . . . + ak )

∗) ∩ L(Rinf)
c . However it might be the case

that neither R′′ nor any other equivalent expression comes with any analysis-precision guarantees.

Definition 4.3. Suppose that we have an expression (a1+ . . .+ak )
∗ and an expression Rinf denoting

infeasible words. Let G = (V , E,Λ) be a directed graph with vertices V , edges E, and a labeling
function Λ : V → Σ. Let Paths(G) be the set of paths ofG . A path is a sequence of verticesv1v2· · ·vn
where for each i < n, (vi ,vi+1) ∈ E. We define LPaths(G) = {Λ(v1)· · ·Λ(vn) | v1· · ·vn ∈ Paths(G)}.
We say that G is a refinement graph with respect to Rinf if LPaths(G) = L((a1 + . . . + ak )

∗) ∩ L(Rinf)
c .

Given the appropriate refinement graph, our problem now becomes one of finding an expression
R′ with LPaths(G) ⊆ L(R′) ⊆ L((a1 + . . . + ak )

∗) and |=PKA R′ ≤ (a1 + . . . + ak )
∗. Because of

Thm. 4.2, we only need to consider regular expressions of the form shown in Eqn. (4) to ensure
|=PKA R′ ≤ (a1 + . . . + ak )

∗. Note that being careful about the ∗’s in R′ is the important piece to
make sure R′ has the form given in Eqn. (4).

Consequently, we now consider the cyclic portions ofG, and determine how to represent these
cyclic behaviors using an expression R′ with a star-height no greater than 1 and an equal number
of unrollings under a star. Because the cyclic behavior of G is captured by its strongly-connected
components, we can focus on a strongly-connected components S .

Theorem 4.4. Let S be a non-trivial strongly-connected component. If
(1) The cycles in S have the same length
(2) There is a vertex common to all the cycles in S
then

There exists an expression of the form shown in Eqn. (4) whose language exactly
matches LPaths(S).

(⋆)

Proof. This proof is constructive. Let {C1, . . . ,CN } be the set of simple cycles of S . Because we
have (1) ∧ (2), |Ci | = n for all i , and there exists a vertex, e , common to all the cycles.

Now rotate all the cyclesCi toC
′
i , where eachC

′
i starts with e . Let ⟨vi ,1, ...,vi ,n⟩ be the sequence

of vertices for a cycle C ′i . After rotation, vi ,1 = vj ,1 = e for each i, j. Let ai = Λ(vi ) for each i . Let

wi = ai ,1 · ... · ai ,n . Consider the expression (
∑N

i=1wi )
∗. Since all the cycles C ′i start and end with

the same vertex, we have L((
∑N

i=1wi )
∗) ⊆ LPaths(S).

However, there is a difference between L((
∑N

i=1wi )
∗) and LPaths(S). For example, suppose that we

have one cycle in S with length 2. That is,C ′1 = ⟨v1,1,v1,2⟩. a1,1a1,2a1,1 ∈ LPaths(S), but a1,1a1,2a1,1 <

L((a1,1a1,2)
∗). We have captured the cyclic behavior of S with (

∑N
i=1wi )

∗; however, we need to
consider how a path can enter a cycle and how it can leave a cycle.
We can solve this issue by creating a new graph S ′, where S ′ has a vertex vstar with label

(
∑N

i=1wi )
∗, and creating head and tail chains in S ′. These chains act as an extension of the cyclic

behavior of the component, showing how control can enter the cycle and how control can leave the
cycle. These heads and tails can be created by creating a head and tail vertex for every vertex in the
component, and then chaining the head vertices together according to the paths in the cycle; and
similarly for the tail vertices. In short, S ′ contains the vertex vstar that captures the cyclic behavior,
as well as head chains going into vstar, and tail chains coming from vstar.
S ′ is a DAG, for which LPaths(S

′) = LPaths(S). Furthermore, since S ′ is a DAG, an expression R′ of
the form shown in Eqn. (4) such that L(R′) = LPaths(S

′) can be constructed by applying an existing
path-expression algorithm. �
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Algorithm 1: SafeRefinement(G)

Data: G = (V , E,Λ) is a refinement graph
/* Create the Extended Condensation DAG Cond */

1 SCCs ← strongly connected components of G;

2 Head ← Empty Map; Tail ← Empty Map;

3 Cond = (Vc , Ec ,Λc ) ← Empty graph; /* Initialize the Extended Condensation DAG

*/

4 for each SCC of SCCs do
5 (Vcomp, Ecomp,Λcomp ) ← ProccessSCC(SCC,Head,Tail,Λ);

6 Vc ← Vc ∪Vcomp ; Ec ← Ec ∪ Ecomp ;Λc ∪ Λcomp ;

7 for (u,w) ∈ E do /* Connect the sccs together */

8 if u andw are not in the same scc then
9 Ec ← Ec ∪ (Tail(u),Head(w));

10 Add entry and exit vertices to Cond with an edge from entry to every other vertex in Cond

and an edge from every other vertex in Cond to exit ;

11 Compute an expression for all paths from entry to exit in Cond using the labeling function
Λc

4.3 Refinement Procedure

In ğ4.2, we saw that it is possible to exactly capture the language of a refinement graph G with an
expression R′ of the form shown in Eqn. (4), when for each strongly-connected components S , all
the simple cycles of S are the same length and share a common vertex. We use this understanding
to develop Alg. 1, which takes in a refinement graph and determines such an R′.

The basic process of Alg. 1 is to identify cyclic behavior, to capture cyclic behavior using one ∗,
and then to connect that cyclic behavior together in a new graph. This process is similar to graph
condensation. In graph condensation, one vertex is created for each strongly connected component,
which can be identified via the algorithm of Tarjan [1972]; then, if there was an edge in the original
graph between any vertices in two strongly connected components c1 and c2, then an edge is added
between the vertices in the condensed graph that represent c1 and c2. The resulting condensed graph
is a directed acyclic graph (DAG). The main conceptual difference with the standard algorithm
and Alg. 1 is that strongly connected components are not necessarily condensed to a single vertex
in Alg. 1. However, the basic structure of (i) process strongly connected components, and then
(ii) connect the result remains. Because our algorithm follows this process, we call the graph it
produces the extended condensation DAG.
To construct the extended condensation DAG, Alg. 1 calls Alg. 2 to process each strongly

connected component. Alg. 2 performs a few tasks. At the very least, Alg. 2 works to create an
over-approximating regular expression that captures the cyclic behavior of the component using a
regular expression with ∗-height at most 1. The first few lines of Alg. 2 check to see if the incoming
component is trivial or not. If a strongly connected component has a single vertex, then the branch
at line 2 is taken. In this case, the algorithm will either return a new vertex with associated labeling
a1, or a

∗
1.

If the incoming strongly connected component has more than one vertex, all the simple cycles
of the component are found. This task can be done via the algorithm of Johnson [Johnson 1975].
Then a check on the cycles is made. If the cycles have different lengths, or if they do not share a
common vertex, then algorithm returns a new vertex with associated labeling (

∑
ai )
∗, where the

ai ’s are the labels associated with the vertices of the component.
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Algorithm 2: ProcessSCC(SCC , Head , Tail , ΛG )

Data: SCC a strongly connected component containing vertices v1, . . . ,vn
1 (V , E,Λ) ← Empty refinement graph;

2 if SCC has a single vertex v1 then
3 if (v1,v1) < SCC then

4 v ′← New vertex; Λ(v ′) ← ΛG (v1);

5 Head(v1) ← (v
′), Tail(v1) ← (v

′);

6 return ({v ′}, ∅,Λ)

7 v ′← New vertex; Λ(v ′) = (Λ(v1))
∗;

8 Head(v1) ← (v
′), Tail(v1) ← (v

′);

9 return ({v ′}, ∅,Λ)

10 Cycles ← all simple cycles of SCC including self-loops;

11 if the cycles of SCC have different lengths or there is no vertex common to all cycles in Cycles

then

12 v ← New vertex; Λ(v) ← (
∑

i=1, ...,n ΛG (vi ))
∗;

13 Head(vi ) ← (v), Tail(vi ) ← (v), for i ∈ 1, . . . ,n;

14 return ({v}, ∅,Λ)

15 e ← a vertex that is common to all the cycles in Cycles;

16 Permute all the cycles in Cycles to start with e;

17 vstar ← New vertex; Λ(vstar ) ← (
∑
⟨vi ,1, ...,vi ,m ⟩∈Cycles (ΛG (vi ,1) · . . . · ΛG (vi ,m)))

∗;

18 Head(e) ← vstar ; V ← V ∪ {vstar };

19 for i = 1, . . . ,n do /* Create head and tail vertices */

20 ti ← New vertex; Tail(vi ) ← ti ; Λ(ti ) ← ΛG (vi );

21 V ← V ∪ {ti };

22 if vi , e then

23 hi ← New vertex; Head(vi ) ← hi ; Λ(hi ) ← ΛG (vi );

24 V ← V ∪ {hi };

25 for ⟨vi ,1, . . . ,vi ,m⟩ ∈ Cycles do /* Chain together head and tail vertices */

26 for k = 2, . . . ,m − 1 do
27 E ← E ∪ {(hi ,k ,hi ,k+1)};

28 for k = 1, . . . ,m − 1 do
29 E ← E ∪ {(ti ,k , ti ,k+1)};

30 E ← E ∪ {(hi ,m,vstar )} ∪ {(vstar , ti ,1)};

31 return (V , E,Λ)

If the condition at line 11 is false, then, by Thm. 4.4, it is possible to capture the cyclic behavior of
the component without adding any additional paths. Alg. 2 follows the construction from Thm. 4.4
in this case.

After the strongly connected components have been processed by Alg. 2, Alg. 1 hooks together
the resulting DAGs returned by Alg. 2 into the extended condensation DAG. Because every vertex
is in some strongly connected component, perhaps a trivial one, Alg. 2 will consider every vertex in
the refinement graph. Therefore, every vertex of the refinement graph will have an entry in both
Head and Tail . With this in mind, Alg. 1 hooks together the DAGs returned by Alg. 2 by looking
at each edge (vi ,vj ) in the refinement graph, and checking to see if vi and vj belong to different
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strongly connected components. If vi and vj are associated with different components, then Alg. 1
adds the edge (Tail(vi ),Head(vj )) to the extended condensation DAG. Finally, Alg. 1 adds an entry
and exit vertex to the extended condensation DAG, and adds the edges (entry,u) and (u, exit) for
every vertex u. The algorithm finishes by determining an expression for all paths from entry to
exit , using the labeling function of the extended condensation DAG. This task can be accomplished
by moving the label of each vertex to its incoming edges, and using a traditional path-expression
algorithm to capture all paths from entry to exit. The resulting path expression will contain all the
paths LPaths(G), where G is the original refinement graph, while satisfying the form of Thm. 4.2.
We now consider the complexity of Alg. 1. If we measure the complexity of Alg. 1 in terms

of the size of graph G, the running time is dominated by the time for finding simple cycles in
Alg. 2. The best known algorithm for this problem is Johnson’s Algorithm, which has complexity
O((|V | + |E |)(c + 1)), where c is the number of simple cycles in the graph. Johnson notes that c can
be exponential in |V |. However, we have found in practice that refinement graphs tend to be fairly
simple (see ğ6).

We now demonstrate Alg. 1 by analyzing in detail the loop in Fig. 1(a), with an algebraic analysis
that uses our refinement algorithm at the evaluation of a iteration operator. We consider the same
abstract domain described at the beginning of ğ2. We denote the statements and conditions of the
program, as well as their semantics in the abstract domain as follows:

s1 := x = 0
s2 := y = 50

c1,t := [x < 100]
c1,f := [x ≥ 100]
s3 := x = x + 1

c2,t := [x > 50]
c2,f := [x ≤ 50]
s4 := y = y + 1

DJs1K = ϕs1 := x ′ = 0 ∧ y ′ = y
DJs2K = ϕs2 := y ′ = 50 ∧ x ′ = x

DJc1,t K = ϕc1,t := x < 100 ∧ x ′ = x ∧ y ′ = y
DJc1,f K = ϕc1,f := x ≥ 100 ∧ x ′ = x ∧ y ′ = y

DJs3K = ϕs3 := x ′ = x + 1 ∧ y ′ = y
DJc2,t K = ϕc2,t := x > 50 ∧ x ′ = x ∧ y ′ = y
DJc2,f K = ϕc2,f := x ≤ 50 ∧ x ′ = x ∧ y ′ = y

DJs4K = ϕs4 := y ′ = y + 1 ∧ x ′ = x

Suppose that the path-expression that described the set of paths of the procedure is

s1 · s2 · (c1,t · s3 · (c2,t · s4 + c2,f ))
∗ · c1,f .

The task of the analysis is then to evaluate DJs1 · s2 · (c1,t · s3 · (c2,t · s4 + c2,f ))
∗ · c1,f K. Consider

refining the loop (c1,t · s3 · (c2,t · s4 + c2,f ))
∗ using algorithm Alg. 1. First, we take the loop to the

form (a1 + . . . + ak )
∗. We can do this by distributing · through + to achieve the following:

(c1,t · s3 · c2,t · s4 + c1,t · s3 · c2,f )
∗

Associate A with c1,t · s3 · c2,t · s4 and B with c1,t · s3 · c2,f . We then have the goal of refining
(A + B)∗. We construct a refinement graph for this problem, by computing pair-wise feasibility
of the summands of (A + B)∗. We find that DJBAK = 0, but DJAAK,DJABK,DJBBK , 0. Thus, we
construct the refinement graph depicted in Fig. 2(a), where the labeling of the vertices is shown.
Call the vertex with associated label A z1, and the vertex with associated label B z2.
The first phase of the algorithm is to build an extended condensation graph (DAG). First, as with

traditional graph condensation, the strongly connected components are identified. For the graph in
Fig. 2(a) there are two strongly connected components: vertex z1, with a self-loop; and vertex z2,
also with a self-loop. Thus, Alg. 1 will call Alg. 2 on both of these components.

Consider the call on Alg. 2 with the strongly connected component that consists of vertex z1. In
this case, the strongly connected component has a single vertex. Therefore, in Alg. 2 the first then
branch is taken. Alg. 2 then checks to see if z1 has a self-loop. In the case of the graph in Fig. 2(a),
this property is true. Therefore, a new vertex is created and associated with a label A∗. Call this
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z1: A z2: B

entry

z′1: A
∗ z′2: B

∗

exit

(a) (b)

Fig. 2. (a) A refinement graph for the loop from Fig. 1(a), based on pair-wise feasibility. (b) The extended

condensation DAG created by Alg. 1 for the graph from (a).

new vertex z ′1. Alg. 2 adds the mapping from z1 to z
′
1 in both Head and Tail , and then returns the

graph containing just z ′1. The same process occurs with z2.
Control is then returned to Alg. 1. The extended condensation DAG Cond just contains vertices

z ′1 and z
′
2 at this point. The final for-loop in Alg. 1 then adds the edge (z ′1, z

′
2) to the graph, because

(z1, z2) was in the original graph. After these vertices have been connected, the extended conden-
sation DAG has been almost completely constructed. All that remains is to add entry and exit
vertices, with an edge from entry to all other vertices, and an edge from all vertices to exit . The
point of the entry and exit vertices is to indicate that, in the original expression, it is possible for
the loop to start and end on any summand. The resulting DAG is shown in Fig. 2(b). Finally, the
algorithm creates a refinement by computing an expression for all paths from entry to exit over
the labels of Cond . For our example, the resulting expression is A∗ + B∗ + A∗B∗. It can easily be
shown that |=PKA A

∗
+ B∗ +A∗B∗ = A∗B∗, which was the refined expression given in ğ2.2

We now give an example to demonstrate some of the more complicated aspects of Alg. 2. Suppose
that we have as input the refinement graph shown in Fig. 3(a). Consider calling Alg. 2 with the
non-trivial strongly connected component that consists of the vertices z1, z2, and z3 with respective
associated labels a, b, and c . This strongly connected component has more than one vertex, so
the first branch is not taken. The algorithm then computes all the simple cycles of the strongly
connected component, which can be accomplished by Johnson’s algorithm [Johnson 1975]. The
simple cycles of this component are ⟨z1, z2⟩ and ⟨z2, z3⟩. Both of these cycles have length 2, and
share the common vertex z2, which means that this cyclic behavior can be captured by a single ∗,
without adding any infeasible paths. That is, the branch at line 11 is not taken. The algorithm then
permutes the cycles so that they start with the same vertex. Thus, after line 16, the cycles inCycles
are ⟨z2, z1⟩ and ⟨z2, z3⟩. The algorithm captures the cyclic behavior of the component by creating a
new vertex vstar with associated labeling (ba + bc)∗. Thus, we have captured the cyclic behavior of
this component with the labeling of vstar . The remaining problem is that the regular expression
(ba + bc)∗ says that each path must start with b; however, a ∈ LPaths(G) but a < L((ba + bc)

∗). Thus,
we have to create heads and tails for this component to indicate how control can get to the cyclic
part, and how control can leave the cyclic part. For z1 and z3, (i) the head and tail vertices z

h
1 and zt1

are created and given labels that are the same as z1’s label; and (ii) zh3 and zt3 are created and given
labels that are the same as z3’s label. For z2, we only create a tail vertex zt2, because starting the
component with labeling b is captured by the labeling of vstar . Alg. 2 also populates the Head and

2Actually, the easiest way to obtain A∗B∗ is to recognize that the edge from entry to z′2 and the edge from z′1 to exit are

extraneous. Our actual implementation removes such extraneous edges, and thus the extended condensation DAG would

just be a chain. However, for this presentation, we do not give the details on how to remove such edges, because precision

is not affected in either case.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 45. Publication date: January 2019.



45:20 John Cyphert, Jason Breck, Zachary Kincaid, and Thomas Reps

z1: a z2: b z3: c

d

e

f

vstar: (bc + ba)
∗

zh3 : c

zh1 : a

zt2: b

zt3: c

zt1: ae

d

f

(a) (b)

Fig. 3. (a) An example refinement graph. (b) The extended condensation DAG without entry and exit vertices.

Tail maps as follows:

Head(z1) = zh1
Tail(z1) = zt1

Head(z2) = vstar
Tail(z2) = zt2

Head(z3) = zh3
Tail(z3) = zt3

The algorithm returns control back to Alg. 1. Alg. 1 also processes the other (trivial) strongly
connected components of the refinement graph. Once Alg. 1 has processed all the strongly connected
components, the next task is to connect the components together. This task is accomplished by
connecting a tail vertex to a head vertex whenever such an edge exists in the original graph. For this
example, in the original graph there is an edge between the vertex with labeling e and the vertex
with labeling c . Consequently, Alg. 1 adds an edge in the extended condensation DAG between
the tail vertex with labeling e and the head vertex with labeling c . Alg. 1 repeats this action for
all of the edges in the original refinement graph. Thus, excluding entry and exit vertices, we are
left with the extended condensation DAG depicted in Fig. 3(b). To finish this example, Alg. 1 adds
entry and exit vertices, and then computes a regular expression for all paths from entry to exit
over the labels of the resulting graph.
In ğ2, we observed in the example of the analysis of the program in Fig. 1(b) that a plausible

refinement lead to a worse analysis result compared with just evaluating a regular expression that
reflected the syntax of the program. We originally had the path expression (A + B +C)∗. We now
show how our algorithm avoids producing the refinement discussed in ğ2. Instead, Alg. 1 returns
the original path expression (A + B +C)∗.
Based on the infeasible paths noted in ğ2, we would obtain the refinement graph depicted in

Fig. 4(a). The only strongly connected component of this graph is the whole graph. Thus, Alg. 1
would call Alg. 2 with the graph depicted in Fig. 4(a). This graph is not a trivial strongly connected
component, so Alg. 2 would compute all the simple cycles of the strongly connected component,
which are (in terms of labelings) ⟨A⟩, ⟨B,C⟩, and ⟨A,B,C⟩. Note that these cycles do not share a
common length. Consequently, the then branch at line 11 is taken, and a new vertex is created
with the labeling (A + B + C)∗. Control returns to Alg. 1, and the extended condensation DAG
depicted in Fig. 4(b) is created. Thus, the final expression created for this example is exactly the
same expression it was given as input, namely, (A + B +C)∗.

Theorem 4.5. Let E be some set of infeasible paths and let Rinf be a regular expression such that
L(Rinf) = E. Now let G be a refinement graph with respect to Rinf and (a1 + . . . + an)

∗. Alg. 1 will
produce a regular expression R′ with
(1) E |=KA R

′
= (a1 + . . . + an)

∗ and L(R′) ⊆ L(a1 + . . . + an)
∗

(2) |=PKA R
′ ≤ (a1 + . . . + an)

∗
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A

B C
entry (A + B +C)∗ exit

(a) (b)

Fig. 4. (a) A refinement graph for the loop from Fig. 1(b), based on pair-wise feasibility. (b) The extended

condensation DAG created by Alg. 1 for the graph from (a).

Proof. As for (2), stars are only created in Alg. 2. Every star that is created in Alg. 2 is either
of the form (

∑
⟨vi1 , ...,vim ⟩∈Cycles

(ΛG (vi ,1) · . . . · ΛG (vi ,m)))
∗ or (

∑
i=1, ...,n ΛG (vi ))

∗. Both of these

satisfy the form of interest, and are the only star expressions in R′. Thus, Alg. 1 always produces
an expression of the form show in Eqn. (4). That is, Alg. 1 returns an expression R′, where R′

has star-height no greater than 1, and every summand under a star in R′ has the same length. By
Thm. 4.2, this property is enough to conclude that |=PKA R

′ ≤ (a1 + . . . + an)
∗ holds.

In regards to (1), E |=KA R′ = (a1 + . . . + an)
∗ holds because the only difference between

R′ and (a1 + . . . + an)
∗ is the (possible) removal of some of the infeasible paths in E. As for

L(R′) ⊆ L(a1 + . . . + an)
∗, L((a1 + . . . + an)

∗) contains all words over the alphabet {a1 + . . . + an}.
Alg. 1 creates a regular expressionR′ over the same alphabet, so trivially L(R′) ⊆ L(a1+. . .+an)

∗. �

Thm. 4.5 shows that Alg. 1 meets the goal (3) described in ğ3.3 for an expression R∗ where R is
star-free. That is, Alg. 1 is a procedure that can be used to refine a most inner loop, and provides
analysis precision guarantees for PKA domains.

5 PUTTING REFINEMENT TO WORK IN A PROGRAM ANALYZER

Refining Arbitrary Regular Expressions. In ğ4, we gave an approach for refining regular ex-
pressions of the restricted form R∗, where R is star-free, to another regular expression R′. We
showed in Thm. 4.5 that L(R′) ⊆ L(R∗) and |=PKA R′ ≤ R∗. In this section, we show how such a
method can be incorporated to rewrite an arbitrary regular expression E to another expression E ′

with L(E ′) ⊆ L(E) and |=PKA E ′ ≤ E.
The method works bottom-up. Suppose that we have an expression R∗ where R is not star-free.

Alg. 3 first takes R to a łsum-of-productsž form. Then Alg. 3 calls itself recursively to refine each
of the summands, Ai , of the transformed R to obtain refined expressions A′i . For each A

′
i , Alg. 3

associates a new label ai . Alg. 3 determines infeasible sequences of ai ’s by analyzing sequences of
A′i ’s. Alg. 3 then uses the methods from ğ4 to refine the expression (a1 + · · · + an)

∗ based on the
detected infeasible sequences. Finally, Alg. 3 returns the resulting refined expression with each ai
replaced byA′i . As to the complexity of Alg. 3, we note that line 8 can cause an exponential blow-up
in the size of the regular expression when the body of a loop is transformed to a sum-of-products
form. In other words, (A1 + · · · +An) can be exponentially larger than R.

We now prove that Alg. 3 refines an arbitrary expression E and gives back an expression E ′ with
|=PKA E ′ ≤ E. First, we give a lemma about pre-Kleene algebras.

Lemma 5.1. Suppose that |=PKA a1 ≤ b1 and |=PKA a2 ≤ b2 hold. Then |=PKA a1 + a2 ≤ b1 + b2
and |=PKA a1a2 ≤ b1b2 hold.
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Algorithm 3: GeneralRefinement(E)

Data: E is a regular expression over an alphabet Σ
1 if E is a label in Σ then

2 return E

3 if E=R1 + R2 then
4 return GeneralRefinement(R1) + GeneralRefinement(R2)

5 if E=R1 · R2 then
6 return GeneralRefinement(R1)·GeneralRefinement(R2)

7 if E = R∗ then

8 (A1 + ... +An) ← distribute · through + in R ;

9 Associate a new alphabet symbol ai with each summand Ai ;

10 A′i ←GeneralRefinement(Ai );

11 DJaiK← DJA′iK;

12 Identify some set Seq of sequences of ai ’s; /* Candidate infeasible sequences */

13 for all sequences ai ,1 · ... · ai ,n of Seq do

14 if DJai ,1 · ... · ai ,nK = 0 then
15 Inf← Inf ∪ ai ,1 · ... · ai ,n
16 Build a refinement graph G out of Inf and ai ’s;

17 E ′← SafeRefinement(G);

18 return Replace all occurrences of ai in E
′ with A′i

Proof. |=PKA a1 ≤ b1 means |=PKA a1 + b1 = b1. Similar for a2 and b2.

|=PKA a1 + a2 ≤ a1 + a2 + b1 + b2 = b1 + b2

|=PKA a1a2 ≤ a1a2 + a1b2 + a2b1 + a2b2 = (a1 + b1)(a2 + b2) = b1b2

�

Theorem 5.2. Suppose that E is a regular expression, and E ′ = GeneralRefinement(E). Then
(1) L(E ′) ⊆ L(E)
(2) |=PKA E ′ ≤ E

Proof. The proof is by structural induction on E.
The base case is when E is just a label, in which case the conditions hold trivially.
For the recursive cases, let E ′

sub
= GeneralRefinement(Esub ) for each sub-expression Esub of

E. The induction hypothesis says that for each sub-expression Esub of E, L(E ′
sub
) ⊆ L(Esub ) and

|=PKA E ′
sub
≤ Esub

(1) The cases for E = R1 + R2 and E = R1 · R2 follow directly from Lem. 5.1.
(2) If E = R∗, Alg. 1 first converts R to have the form A1 + ... +An , and then refines each Ai into

A′i , calling Alg. 3 recursively. It then uses Alg. 1 to build a refined regular expression E ′ using
the labels {ai }.
Note that by Thm. 4.5, L(E ′) ⊆ L((a1+ ...+an)

∗) and |=PKA E ′ ≤ (a1+ ...+an)
∗. By Lem. 5.1, as

well as the monotonicity axiom of star for a pre-Kleene algebra (Defn. 3.3, item (4)), if we replace
each occurrence of ai in E

′ with Ai to obtain EA, we can conclude L(EA) ⊆ L((A1 + ... +An)
∗)

and |=PKA EA ≤ (A1+ ...+An)
∗
= E. Furthermore, because of the induction hypothesis, we have

L(A′i ) ⊆ L(Ai ) and |=PKA A
′
i ≤ Ai . Consequently, if we replace each ai in E

′ withA′i to obtain E
′
A,

we can conclude L(E ′A) ⊆ L(EA) ⊆ L((A1+ ...+An)
∗) and |=PKA E ′A ≤ EA ≤ (A1+ ...+An)

∗
= E.

The algorithm returns E ′A.
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�

Thm. 5.2 shows that for the most part Alg. 3 fits the description of a refinement procedure that
meets the goal (3) described in ğ3.3 for any arbitrary expression. The only difference is that Alg. 3
does not refine R based on some externally given set of infeasible paths E. Instead Alg. 3 refines
sub-expressions based on an internal strategy for detecting infeasible path sequences (lines 12ś15).
The benefits of this design are described below.

Recognizing Infeasible Sub-Paths. The second issue that must be addressed to put our re-
finement technique to work in a program analyzer is that of recognizing infeasible sub-paths.
Lines 12ś15 of Alg. 3 constitute a mechanism for identifying a set of infeasible sub-paths, which
could be used with different policies. There are a few interesting points to observe about this
mechanism.
• It exploits compositionality: the values in the sequences ai ,1 · ... ·ai ,n used in the test DJai ,1 · ... ·
ai ,nK = 0 involve summary values computed for subterms of R (where E has the form R∗). The
mechanism applies to non-leaf loops because a summary, in the form of an abstract-domain
value, will have been computed for each more-deeply-nested loop contained within R.
• Because the test DJai ,1 · ... · ai ,nK = 0 merely involves evaluation in the abstract domain, the
test is decidable.
• Because the test is performed using the same abstract domain employed everywhere else in
the analyzer, there should be a good łimpedance matchž with the rest of the analyzer. That is,
the test will only cause a sub-path to be excluded if the abstract domain has enough fidelity to
observe the properties that cause the sub-path to be infeasible.

These properties contrast with the method Sharma et al. [2011] use to identify splitter predicates:
their method also works bottom-up, but for non-leaf loops they need to rely on a separate method
for identifying loop invariants of inner loops.

In our experiments, we used a simple policy of checking all pairs of summands when R is put in
sum-of-products form, as discussed in the paragraph just after Ex. 2.1.

6 EXPERIMENTS

Our experiments were designed to answer the questions posed below.
The algorithm given in ğ4 refines a regular expression R into a refinement R′ for which it is

guaranteed that the results obtained with R′ are no worse than those obtained with R. However,
in practice, we would also like a refinement to provide better answers. One measure of success is
whether employing the refinement algorithm improves some łdown-stream taskž that uses the
analysis results.

ExperimentalQuestion 1: Does our refinement algorithm allow an analysis to prove more
assertions in practice?

In practice, we often find that the most expensive part of an analysis is the evaluation of the ∗
operators in a regular expression. The refinement procedure works bottom-up, repeatedly taking a
regular expression of the form R∗, where R is star-free, and producing another expression R′. At
each level, there is only one star operator to evaluate; however, there is no a priori bound on the
number of star operators in R′. Thus, it could be the case that the refinement procedure increases
precision, at the cost of substantially increased analysis time.

Experimental Question 2: Do our refinements greatly increase analysis time in practice?
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We would also like to understand how well our approach performs compared to alternative
methods for static program analysis. It is possible that our techniques increase analysis precision
in practice, but not enough to make algebraic program analyses competitive with other analysis
techniques.

Experimental Question 3: How does the performance of an algebraic program analyzer that
uses our refinement techniques compare to that of state-of-the-art model checkers?

6.1 Experimental Setup

We implemented Alg. 3 as an extension of the implementation of Compositional Recurrence Analysis
(CRA) [Farzan and Kincaid 2015]. At each star, our implementation checks the feasibility of pairs of
labels ai , aj to see whether aiaj or ajai are infeasible action sequences. We tested the algorithm
using two different abstract domains, which we call KCBR [Kincaid et al. 2018] and ACI [Ancourt
et al. 2010] (Ex. 3.4). The KCBR domain is more expressive than the ACI domain, but does not
satisfy (all of) the axioms of a pre-Kleene algebra (Defn. 3.3). Thus, there is no longer a guarantee
that the results from analyzing the refined regular expression are no worse than the results from
analyzing the original expression. However, because our refinements are always sound in the sense
of Defn. 3.8, the resulting analysis will still be a (sound) over-approximation. The ACI domain
always satisfies the axioms, so the refinement algorithm is guaranteed to give analysis results that
are at least as good as those obtained without using refinement.
To answer the experimental questions, we ran our implementation(s), as well as the software

model checkers Ultimate Automizer [Heizmann et al. 2013] version 0.1.23 and SeaHorn [Gurfinkel
et al. 2015] version 0.1.0, on several suites of micro-benchmark programs containing only true
assertions. In Tab. 1, we report for each suite (i) the number of programs for which the analyzer
was able to prove all assertions, (ii) the total analysis time, and (iii) the number of timeout and
out-of-memory exceptions. Timings (with a timeout limit of 300 seconds) were taken on a virtual
machine (using Oracle VirtualBox) with 8GB of RAM, with a guest OS of Ubuntu 14.04, host OS of
CentOS 6.9, and a 3.2 GHz quad-core Intel Core i5-4570 host CPU. The programs come from the
following sources:
• 35 programs are from a suite used to test the resource-bound-analysis tool C4B [Carbonneaux
et al. 2015].
• 46 programs are from a suite used to test the invariant-generating tool HOLA [Dillig et al. 2013].
• 96 programs are from the Integers and Control FlowÐLoops subcategory of SV-COMP16 [SV-
COMP16 2016].
• 47 programs are benchmarks containing multi-path loops that we created to test the analyzer.

Answers to the three experimental questions are given in ğ6.2, ğ6.3, and ğ6.4.

6.2 EQ1: Does Refinement Allow More Assertions to be Proven?

In short, the answer is, łYes, the refinement algorithm allows the analyzer to prove more assertions
in practice. Overall, refinement helped both KCBR and ACI prove over 25% more assertions than
without refinement.ž

There was one instance where the additional overhead of refinement increased the analyzer’s
memory usage enough that the analysis could not complete successfully. This example was in the
loops suite, and is the reason that, for both the KCBR and ACI domains, the number of assertions
proved decreased for that suite when using refinement. For all other suites, the refinement algorithm
allowed both the KCBR and ACI domains to prove strictly more assertions than when the analysis
was performed without refinement.
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Table 1. The results of the assertion-checking experiments. Column 2 shows the total number of programs

in each benchmark suite. Columns 3-20 show analysis results under six different conditions: with abstract

domain KCBR or ACI, each with or without using the refinement algorithm, and using the state-of-the-art

model checkers Ultimate Automizer and SeaHorn. For each configuration, the left column indicates the total

running time (in seconds), the middle column indicates the number of programs in which all assertions were

proven by the analyzer, and the right column is a pair T/M where T is the number of timeouts and M is the

number of out-of-memory exceptions. In each row, the smallest running time and the greatest number of

assertions proved are shown in boldface.

Benchmark Total KCBR KCBR ACI ACI UAutomizer SeaHorn
Suite + refinement + refinement

#P Time #P #E Time #P #E Time #P #E Time #P #E Time #P #E Time #P #E

C4B 35 37.7 19 0/0 50.4 28 0/0 36.0 19 0/0 49.5 28 0/0 4118.7 24 11/0 1861.2 29 6/0

HOLA 46 62.0 33 0/0 90.1 42 0/0 59.6 30 0/0 86.5 37 0/0 2467.3 36 7/0 1212.8 38 4/0

SV/loop-accel 19 13.2 13 0/0 17.6 15 0/0 12.6 12 0/0 17.4 13 0/0 2554.0 11 7/0 907.3 15 3/0

SV/loop-invgen 19 32.1 18 0/0 56.6 19 0/0 31.5 18 0/0 53.2 19 0/0 2221.2 12 7/0 474.1 17 1/0

SV/loop-lit 15 12.0 10 0/0 16.1 13 0/0 11.4 10 0/0 15.8 12 0/0 940.1 13 2/0 302.9 13 1/0

SV/loop-new 8 6.2 6 0/0 8.1 7 0/0 6.1 4 0/0 6.0 5 0/0 1469.3 4 4/0 301.8 6 1/0

SV/loops 33 45.7 22 0/0 68.4 21 0/1 44.3 22 0/0 68.9 21 0/1 2275.2 26 6/0 910.4 26 3/0

misc 47 39.4 20 0/0 70.3 36 0/0 38.2 19 0/0 68.0 33 0/0 1909.4 43 4/0 8.7 43 0/0

Total 222 248.3 141 0/0 377.6 181 0/1 239.7 134 0/0 365.3 168 0/1 17955.5 169 48/0 5979.2 187 19/0

Consider the programs shown in Fig. 5. These programs each contain one assertion. When using
either the KCBR or the ACI domain, neither assertion can be proven by the analyzer without using
refinement, but both assertions can be proven with refinement.

The program shown in Fig. 5(a) is leapsum2.c from the misc suite. The loop body in this program
has two paths; we will use the label A for the path that takes the then-branch of the conditional
statement, and the label B for the path that takes the else-branch. When we check the feasibility of
path sequences, we discover that an iteration taking pathA can only be followed an iteration taking
path B, and vice versa. As a result, we can refine a regular expression of the form (A+ B)∗ to one of
the form (ϵ +B)(A ·B)∗(ϵ +A). The refined star bodyA ·B can be described by the transition formula
x ′ = x + 2 ∧ y ′ = y + 2 ∧ z ′ = 1 ∧ t ′ = t + 1. This formula implies that the difference between x
and y after the star (A · B)∗ is the same as before the star, which is the key step in proving that the
assertion holds. In contrast, without refinement, the analyzer produces a summary for the loop by
summarizing its two paths and joining them with a disjunction; the resulting summary is imprecise
and does not imply that the difference between x and y remains bounded between 1 and −1.
The program shown in Fig. 5(b) is maxequals_linear_2.c from the misc suite. This program

illustrates a less-obvious application of refinement. There are two paths A and B through the loop
body, depending on whether x is assigned the left (A) or the right (B) subexpression of themax
macro, i.e., depending on whether or not x > 75− 10 ∗ t holds. The subexpression 75− 10 ∗ t always
decreases from one iteration to the next, so any execution of the loop proceeds in two phases: a
first phase of at most one iteration in which B occurs, and a second phase in which only A occurs.
Therefore, when refinement is used, the analyzer can conclude that x will ultimately have the
value 55, which is the value of 75 − 10 ∗ t on the first iteration. This property suffices to prove the
assertion. Without refinement, the analyzer fails to find any upper bound on x that is implied by
the loop body’s transition formula, and therefore the analyzer cannot prove the assertion.

6.3 EQ2: Does Refinement Greatly Increase Analysis Time?

In short, the answer is, łThe refinement algorithm caused an increase in overall analysis time of
about 50%.ž
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void main(int N) {
int x = 1; int y = 2; int z = 1;
for(int t = 0; t < N; t++) {
if (z > 0) {

x = x + 2;
z = -1;

} else {
y = y + 2;
z = 1;

}
}
assert(x + z == y);

}

#define max(A,B) ((A > B) ? A : B)
int x;
void loop() {
for(int t = 2; t <= 10; t++) {
x = max(x, 75 - 10 * t);

}
}
void main() {
x = 0;
loop();
assert(x == 55);

}

(a) misc/leapsum2.c (b) misc/maxequals_linear_2.c

Fig. 5. Two examples of programs having assertions that the analyzer can prove only when using the

refinement algorithm.

Because both the KCBR and ACI domains are based on transition formulas, the infeasibility check
on line 14 of Alg. 3 results in a call to an SMT solver. Experimentally, we found that these feasibility
checks are often the main contributor to the increased analysis time when using refinement. As a
corollary, we find that while in principle Alg. 1 can be exponential time for certain complicated
refinement graphs, in our experience Alg. 1 does not significantly contribute to increased analysis
time.

6.4 EQ3: How Does CRA With Refinement Compare with State-of-the-Art Model

Checkers?

In terms of assertions proved, we found experimentally that equipping the KCBR and ACI domains
with refinement made CRAÐwith each domainÐcompetitive with Ultimate Automizer and SeaHorn.
Restricting the comparison to KCBR versus SeaHorn, we see that refinement allows KCBR to at least
tie SeaHorn, in terms of assertions proved, for the HOLA, loop-accel, and loop-lit suites, whereas
KCBR without refinement is well behind SeaHorn for these suites. Furthermore, refinement allows
KCBR to overtake SeaHorn for the loop-new category and increase its lead in the loop-invgen
category.
In terms of total analysis time, CRA with the KCBR and ACI domains (either with or without

refinement) completes the test suite in a fraction of the time taken by Ultimate Automizer or
SeaHorn. The slowest variant of CRAÐbased on the KCBR domain with refinementÐis more
than forty-seven times faster than Ultimate Automizer and fifteen times faster than SeaHorn.
However, these speedup ratios are due, in part, to the fact that CRA with KCBR or ACI never
timed out on any example, whereas Ultimate Automizer and SeaHorn, which are both based on
abstraction refinement, timed out on many examples. Thus, the total times given in Tab. 1 are
highly dependent on the chosen timeout value, here 300 seconds. Nevertheless, the figures of >47x
and >15x improvement are valid in the sense that we optimistically credit Ultimate Automizer and
SeaHorn as having completed in 300 seconds for the examples on which they time out.

If we exclude programs for which Ultimate Automizer timed out, then Ultimate Automizer took
20 seconds on average to analyze a program. Similarly, SeaHorn took 1.4 seconds on average for
programs on which it did not time out. These numbers should be compared to 1.08 and 1.7 seconds
per program for the fastest and slowest variants of CRA. However, there were example programs
for which Ultimate Automizer and SeaHorn took much longer than average. Excluding timeouts,
the maximum time that each tool took to analyze a program was 10.1, 12.0, 9.9, 11.5, 261.7, and 168.9
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seconds for KCBR, KCBR+refinement, ACI, ACI+refinement, Ultimate Automizer, and SeaHorn,
respectively.

7 RELATED WORK

Cousot and Cousot [2002] developed a general theory of semantically justified program trans-
formation based on abstract interpretation. They view a syntactic program as an abstraction of
its semantics, and a syntactic transformation as a (conceptual) decompilation of an associated
semantic transformation. They develop associated correctness conditions for when a syntactic
transformation is an over-approximation of a semantic transformation. Their methodology aims to
provide a conceptual framework for proving that, compared to the original program, each program
produced by some transformation algorithm has some desired property in the concrete semantics.
A similar approach could be used in our context, but we have the slightly different goal of being
able to show that, for each transformation R → R′, certain desirable properties hold for both the
concrete semantics of R and R′ and the abstract semantics of R and R′.
Our work represents a framework that can be instantiated with different abstract domains. It

comes equipped with a transformation algorithm taking, e.g., R to R′, for which (i) the concrete
semantics of R′ is sound with respect to the concrete semantics of R, and (ii) the abstract semantics
of R′ yields a value that is sometimes betterÐand never worseÐthan the abstract semantics of R.
The framework uses two related algebras, Kleene algebra and pre-Kleene algebra, to characterize
the concrete and abstract properties on which the transformation algorithm relies. We are then able
to use algebraic reasoning to prove properties of the transformation algorithm. In a similar vein,
Kot and Kozen [2005] consider an axiomatization that is weaker than Kleene algebra, which they
use in an algorithm to compute the closure of a matrix with respect to a cutset of the control-flow
graph. This weaker axiomatization is incomparable to the pre-Kleene axiomatization given in
this paper. The axiomatization used in Kot and Kozen [2005] does not assume full distributivity
laws, which we do. However, they assume the ascending-chain condition, which allows them to
consider a more restrictive ∗ than the ones considered in this paper. Kozen [2003] also uses an
axiomatization based on Kleene algebra, called Kleene algebra with tests (KAT) in a static-analysis
context. This work differs from ours in that Kozen [2003] uses a complete equational theory and
careful manual reasoning, while we use an approximate abstract domain and automatic reasoning.
At a high level, Kozen [2003] annotates a program’s path expression, say R, with a (security) policy
to obtain an R′. Then, to prove that R satisfies the policy, Kozen [2003] uses a special theorem
prover to show, using our notation, E |=KAT R ≤ R′, for some manually chosen set E. We, on the
other hand, automatically determine a set of infeasible paths E, and refine our original expression
E to an expression E ′ with E |=PKA E ′ ≤ E.

The idea of applying transformations to a program’s IR as a way to improve the results of static
analysis has a long history. In some work, transformations are explicit, such as the abstraction-
refinement method used in SLAM [Ball and Rajamani 2001], approaches based on isolating hot
paths [Ammons and Larus 1998; Fisher 1981; Melski 2002], and techniques for rewriting loops
[Balakrishnan et al. 2009; Flores-Montoya and Hähnle 2014; Gulwani et al. 2009; Sharma et al. 2011].
In other work, transformations are implicit: extra informationÐtypically information about the
execution contextÐis used to label values that arise during the course of an analysis. This approach
is tantamount to splitting lazily the elements of the IR, where each duplicated IR element is then
associated with a single analysis value. The latter idea appears in numerous places, going back at
least to the work of Holley and Rosen [1981] on łQualified data flow problems.ž Other instances of
the idea include the call-strings approach to interprocedural dataflow analysis [Sharir and Pnueli
1981], weighted pushdown systems [Bouajjani et al. 2003; Reps et al. 2005], and trace partitioning
[Rival and Mauborgne 2007]. It has been used in such systems as ESP [Das et al. 2002], Archer [Xie
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et al. 2003], and Saturn [Dillig et al. 2008], and in analysis libraries such as Moped [Schwoon [n.
d.]] and WALi [Kidd et al. 2007].

Our work performs an explicit rewrite of the IR used by the analyzer (namely, a regular expres-
sion). It was directly inspired by experience with an implementation of the algorithm of Sharma
et al. [2011]. While that algorithm works well for some examples, it inspired us to investigate
whether an algorithm loop-transformation could provide an łimprovement guarantee.ž While our
algorithm does not guarantee improved analysis results, it does guarantee not to produce worse (or
incomparable) results (see Thm. 5.2).
There is a huge literature on loop transformations for the purpose of optimizing a program’s

execution time: transformations are typically performed on innermost loops, or loop nests. However,
that work is more a client of an analysis, and focused on reducing the execution time, whereas the
focus of our work is on improving analysis precision.
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